

 Sensor Module

User’s Manual 2006-06-14

 A Dynamixel X-S1

 Closer to Real,

DYNAMIXEL AX-S1

Contents
1. Summary

1-1. Overview and Characteristics of AX-S1 Page 2

1-2. Main Specifications Page 3

2. Dynamixel Operation
2-1. Mechanical Assembly Page 4

2-2. Connector Assembly Page 5

2-3. Dynamixel Wiring Page 6

3. Communication Protocol
3-1. Communication Overview Page 9

3-2. Instruction Packet Page 10

3-3. Status Packet Page 11

3-4. Control Table Page 13

4. Instruction Set and Examples
4-1. WRITE DATA Page 24

4-2. READ DATA Page 25

4-3. REG WRITE and ACTION Page 26

4-4. PING Page 27

4-5. RESET Page 27

4-6. SYNC WRITE Page 28

` 5. Example Page 30

` Appendix Page 36

1

DYNAMIXEL AX-S1

1. Dynamixel AX-S1

1-1. Overview and Characteristics of AX-S1

Dynamixel AX-S1 Dynamixel Sensor Module ‘AX-S1’ is a Smart Sensor Module that integrates the

functions of sound sensor, infrared remote control receiver, infrared distance sensor,

light sensor, buzzer, as well as the driver, control unit and network. Compact in size,

AX-S1 has various functions and it is made up of special materials that can withstand

even the extreme external force. In addition, it can readily recognize subtle changes

such as internal temperature, service voltage and other internal conditions and has

built-in capability to resolve the situations at hand. Followings are the strengths of the

Dynamixel Sensor Module AX-S1.

Precision Control Capability to read sensor that has been detected through 1024 steps resolution

Feedback Feedback capabilities for the values of infrared distance sensor, light sensor, sound

sensor.

Alarm System Alarm system that detects out of the range values of internal temperature, torque,

service voltage were preset by users (Alarming)

Communication Wiring is easy with daisy chain connection, and it support communication speeds up to

1M BPS.

Distributed Control Position, velocity, compliance, and torque can be set with a single command packet,

thus enabling the main processor to control many Dynamixel units even with very few

resources.

Engineering Plastic The main body of the unit is made with high quality engineering plastic which enables it

to handle high torque loads.

Frames Hinge and side mount frame are included as basics. AX-S1 is compatible with AX-12

frames 100%, making it possible to use in various ways. Be cautious as unlike AX-12,

Horn part of AX-S1 does not turn, so assemble frame in correct angle with the usage

purpose in mind.

2

DYNAMIXEL AX-S1

Infra-red Sensor It is embedded with three directions infrared sensor, making it possible to detect

left/center/right distance angle as well as the light.

Remocon Sensor It has built-in remote control sensor in center, making it possible to transmit and receive

infrared data between sensor modules.

Internal Mic It has built-in micro internal microphone, making it possible not only to detect current

sound level and maximum loudness but also an ability to count the number of sounds,

for instance, the numbers of handclapping

Buzzer Built-in buzzer allows the playback of musical notes and other special note effects.

1-2. Main Specifications

Dynamixel

Networked Sensor Module AX-S1 for Robot Application

Weight 37g

Resolution 10bit (1024)

Voltage 7V~10V (Recommended voltage: 9.6V)

Supply Current 40mA

Operate Temperature -5 ~ +85℃ ℃

Command Signal Digital Packet

Protocol Type Half duplex Asynchronous Serial Communication (8bit,1stop,No Parity)

Link (Physical) TTL Level Multi Drop (daisy chain type Connector)

ID 254 ID (0~253)

Communication Speed 7343bps ~ 1 Mbps

Feedback Infra-red Sensor, Internal Mic, Temperature, Input Voltage,

IR Remocon Tx/Rx Data, etc.

Material Engineering Plastic

3

DYNAMIXEL AX-S1

2. Dynamixel Operation
2-1. Mechanical Assembly

Frames Provided The two frames provided with AX-S1 are shown below.

 OF-12SH OF-12S

 OF-12SH Installation The OF-12SH (hinge frame) can be installed on the AX-12 as the following.

 Exploded view Assembled

OF-12S Installation The OF-12S (side mount frame) can be installed on the AX-12 as the following. The OF-

12S can be mounted on any of the three faces (left, right, or under side) of the AX-12

body as needed.

Horn2Body

Assembled Exploded view

Body2Body

 Exploded view Assembled

4

DYNAMIXEL AX-S1

2-2. Connector Assembly
 Assemble the connectors as shown below. Attach the wires to the terminals using the

correct crimping tool. If you do not have access to a crimping tool, solder the terminals to

the wires to ensure that they do not become loose during operation.

5

DYNAMIXEL AX-S1

2-3. Dynamixel Wiring

Pin Assignment The connector pin assignments are as the following. The two connectors on the

Dynamixel are connected pin to pin, thus the AX-S1 can be operated with only one

connector attached.

 PIN2: VDD
PIN1: GND

PIN3: Data

PIN1: GND
 PIN2: VDD

PIN3: Data

Wiring Connect the AX-2 actuators pin to pin as shown below. Many AX-S1 andAX-12 actuators

can be controlled with a single bus in this manner.

Control Box “CM-5”

Main Controller To operate the Dynamixel actuators, the main controller must support TTL level half

duplex UART. A proprietary controller can be used, but the use of the Dynamixel

controller CM-5 is recommended.

PC LINK A PC can be used to control the Dynamixel via the CM-5 controller.

PC Dynamixels

CM-5

RS232
Level

TTL
Level

6

DYNAMIXEL AX-S1

Bioloid A robot can be built using only the CM-5 controller, a number of AX-12 actuators and

AX-S1. An edutainment robotic kit named “Bioloid” is available which is based on the

CM-5 controller, the AX-12 actuators and AX-S1

 For details,

Connection to UART To control the

signals to the h

below.

 The power

Pin 1 and Pin 2

explain the use

circuitry built in,

The direction o

DIRECTION_PO

DIRECTIO

CM-5 in

An example of a robot built with Bioloid
 please refer to the Bioloid manual.

Dynamixel actuators, the main controller needs to convert its UART

alf duplex type. The recommended circuit diagram for this is shown

 is supplied to the Dynamixel actuator from the main controller through

of the Molex3P connector. (The circuit shown above is presented only to

 of half duplex UART. The CM-5 controller already has the above

thus the Dynamixel actuators can be directly connected to it)

f data signals on the TTL level TxD and RxD depends on the

RT level as the following.

DATA

TXD

RXD

74HC04

74HC126

N_PORT

ternal circuit (HALF DUPLEX UART)

10K

5V

9.6V
GND

DATA(PIN3)

74HC126

VDD(PIN2)
GND(PIN1)

7

DYNAMIXEL AX-S1

• When the DIRECTION_PORT level is High: the signal TxD is output as Data

• When the DIRECTION_PORT level is Low: the signal Data is input as RxD

Half Duplex UART A multi-drop method of connecting multiple Dynamixel actuators to a single node is

possible by using the half duplex UART. Thus a protocol that does not allow multiple

transmissions at the same time should be maintained when controlling the Dynamixel

actuators.

Main

Controller

[Multi Drop Link]

Caution Please ensure that the pin assignments are correct when connecting the Dynamixel

actuators. Check the current consumption when powering on. The current consumption

of a single Dynamixel actuator unit in standby mode should be no larger than 50mA

Connection Status Verification

When power is applied to the Dynamixel actuator, the LED blinks twice to confirm its

connection.

Inspection If the above operation was not successful, then check the connector pin assignment and

the voltage/current limit of the power supply.

8

DYNAMIXEL AX-S1

3. Communication Protocol

3-1. Communication Overview

Packet The main controller communicates with the Dynamixel units by sending and receiving

data packets. There are two types of packets; the “Instruction Packet” (sent from the

main controller to the Dynamixel actuators) and the “Status Packet” (sent from the

Dynamixel actuators to the main controller.)

Communication For the system connection below, if the main controller sends an instruction packet with

the ID set to N, only the Dynamixel unit with this ID value will return its respective status

packet and perform the required instruction

Unique ID If multiple Dynamixel units have the same ID value, multiple packets sent

simultaneously collide, resulting in communication problems. Thus, it is imperative that

no Dynamixel units share the same ID in a network node.

Protocol The Dynamixel actuators communicate through asynchronous serial communication

with 8 bit, 1 stop bit and no parity.

Instruction Packet
Main

Controller Status Packet

ID=0 ID=1 ID=N

Main
Controller

Instruction Packet(ID=N)

Status Packet(ID=N)

9

DYNAMIXEL AX-S1

3-2. Instruction Packet

 The Instruction Packet is the packet sent by the main controller to the Dynamixel units

to send commands. The structure of the Instruction Packet is as the following.

Instruction Packet OXFF 0XFF ID LENGTH INSTRUCTION PARAMETER1 …PARAMETER N CHECK

SUM

 The meanings of each packet byte definition are as the following.

0XFF 0XFF The two 0XFF bytes indicate the start of an incoming packet.

ID The unique ID of a Dynamixel unit. There are 254 available ID values, ranging from

0X00 to 0XFD.

Broadcasting ID ID 0XFE is the Broadcasting ID which indicates all of the connected Dynamixel units.

Packets sent with this ID apply to all Dynamixel units on the network. Thus packets sent

with a broadcasting ID will not return any status packets.

LENGTH The length of the packet where its value is “Number of parameters (N) + 2”

INSTRUCTION The instruction for the Dynamixel actuator to perform.

PARAMETER0…N Used if there is additional information needed to be sent other than the instruction itself.

CHECK SUM The computation method for the ‘Check Sum’ is as the following.

Check Sum = ~ (ID + Length + Instruction + Parameter1 + ... Parameter N)

If the calculated value is larger than 255, the lower byte is defined as the checksum

value.

~ represents the NOT logic operation.

10

DYNAMIXEL AX-S1

3-3. Status Packet(Return Packet)

 The Status Packet is the response packet from the Dynamixel units to the Main

Controller after receiving an instruction packet. The structure of the status packet is as

the following.

 OXFF 0XFF ID LENGTH ERROR PARAMETER1 PARAMETER2…PARAMETER N

CHECK SUM

The meanings of each packet byte definition are as the following.

0XFF 0XFF The two 0XFF bytes indicate the start of the packet.

ID The unique ID of the Dynamixel unit returning the packet.

LENGTH The length of the packet where its value is “Number of parameters (N) + 2”

ERROR The byte representing ERROR sent from the Dynamixel unit. The meaning of each bit is

as the following.

Bit Name Details

Bit 7 0 -

Bit 6
Instruction

Error

Set to 1 if an undefined instruction is sent or an
action instruction is sent without a Reg_Write
instruction.

Bit 5 0

Bit 4
Checksum

Error
Set to 1 if the checksum of the instruction packet is
incorrect

Bit 3 Range Error
Set to 1 if the instruction sent is out of the defined
range

Bit 2
Overheating

Error

Set to 1 if the internal temperature of the Dynamixel
unit is above the operating temperature range as
defined in the control table.

Bit 1
Angle Limit

Error

Set as 1 if the Goal Position is set outside of the
range between CW Angle Limit and CCW Angle Limit.

Bit 0
Input Voltage

Error
Set to 1 if the voltage is out of the operating voltage
range as defined in the control table.

11

DYNAMIXEL AX-S1

PARAMETER0…N Used if additional information is needed

CHECK SUM

 The computation method for the ‘Check Sum’ is as the following.

Check Sum = ~ (ID + Length + Instruction + Parameter1 + ... Parameter N)

If the calculated value is larger than 255, the lower byte is defined as the checksum

value. ~ represents the NOT logic operation.

12

DYNAMIXEL AX-S1

3-4. Control
Table

Address Item Access Initial Value
0(0X00) Model Number(L) RD 13(0x0D)
1(0X01) Model Number(H) RD 0(0x00)
2(0X02) Version of Firmware RD ?
3(0X03) ID RD,WR 100(0x64)
4(0X04) Baud Rate RD,WR 1(0x01)
5(0X05) Return Delay Time RD,WR 250(0xFA)
6(0X06) (Reserved) RD,WR 255(0xFF)
7(0X07) (Reserved) RD,WR 3(0x03)
8(0X08) (Reserved) RD,WR 255(0xFF)
9(0X09) (Reserved) RD,WR 3(0x03)
10(0x0A) (Reserved) - 0(0x00)
11(0X0B) the Highest Limit Temperature RD,WR 100(0x64)
12(0X0C) the Lowest Limit Voltage RD,WR 60(0X3C)

13(0X0D) the Highest Limit Voltage RD,WR 190(0xBE)
14(0X0E) (Reserved) RD,WR 255(0XFF)

15(0X0F) (Reserved) RD,WR 3(0x03)
16(0X10) Status Return Level RD,WR 2(0x02)
17(0X11) (Reserved) RD,WR 4(0x04)
18(0X12) (Reserved) RD,WR 4(0x04)
19(0X13) (Reserved) RD,WR 0(0x00)
20(0X14) Obstacle Detected Compare Value RD,WR 32(0x20)
21(0X15) Light Detected Compare Value RD,WR 32(0x20)
22(0X16) (Reserved) RD,WR 32(0x20)
23(0X17) (Reserved) RD 3(0x03)
24(0X18) (Reserved) RD,WR 0(0x00)
25(0X19) (Reserved) RD,WR 0(0x00)
26(0X1A) Left IR Sensor Data RD ?
27(0X1B) Center IR Sensor Data RD ?
28(0X1C) Right IR Sensor Data RD ?
29(0X1D) Left Luminosity RD ?
30(0X1E) Center Luminosity RD ?
31(0X1F) Right Luminosity RD ?
32(0X20) Obstacle Detection Flag RD ?
33(0X21) Luminosity Detection Flag RD ?

34(0X22) (Reserved) RD,WR 0
35(0X23) Sound Data RD,WR ?
36(0X24) Sound Data Max Hold RD,WR ?
37(0X25) Sound Detected Count RD,WR ?
38(0X26) Sound Detected Time(L) RD,WR ?
39(0X27) Sound Detected Time(H) RD,WR ?
40(0X28) Buzzer Index RD,WR ?
41(0X29) Buzzer Time RD,WR ?
42(0X2A) Present Voltage RD ?
43(0X2B) Present Temperature RD ?
44(0X2C) Registered Instruction RD,WR 0(0x00)
45(0X2D) (Reserved) - 0(0x00)
46[0x2E) IR Remocon Arrived RD 0(0x00)
47[0x2F) Lock RD,WR 0(0x00)
48[0x30) IR Remocon RX Data 0 RD ?
49[0x31) IR Remocon RX Data 1 RD ?
50[0x32) IR Remocon TX Data 0 RD,WR ?
51[0x33) IR Remocon TX Data 1 RD,WR ?
52[0x34) Obstacle Detected Compare RD,WR ?

53[0x35) Light Detected Compare RD,WR ?

EEPROM
Area

RAM
Area

13

DYNAMIXEL AX-S1

Control Table The Control Table contains information on the status and operation of the Dynamixel

actuator. The Dynamixel actuator is operated by writing values to its control table and its

status is checked by reading values off its control table.

RAM and EEPROM The data values for the RAM area will be set to the default initial values whenever the

power is turned on. However, the data values for the EEPROM area are non-volatile

and will still remain even after the power is turned off.

Initial Value The Initial Value column on the right side of the control table shows the Factory Default

Values for the case of EEPROM area data, and shows the initial value when the power

is turned on for the case of RAM area data.

The following explains the meaning of data stored in each of the addresses in the

control table.

Address 0x00,0x01 Model Number. For AX-S1, the value is 0X000D(13).

Address 0x02 Firmware Version.

Address 0x03 ID. The unique ID number assigned to each Dynamixel actuators for identifying them.

Different IDs are required for each Dynamixel actuators that are on the same network.

Address 0x04 Baud Rate. Determines the communication speed. The computation is done by the

following formula.

 Speed (BPS) = 2000000 / (Address4 + 1)

Note

Data Value for each Major Baud Rate
Address4 Set BPS Goal BPS Error
1 1000000.0 1000000.0 0.000%
3 500000.0 500000.0 0.000%
4 400000.0 400000.0 0.000%
7 250000.0 250000.0 0.000%
9 200000.0 200000.0 0.000%
16 117647.1 115200.0 -2.124%
34 57142.9 57600.0 0.794%
103 19230.8 19200.0 -0.160%
207 9615.4 9600.0 -0.160%

A maximum Baud Rate error of 3% is within the tolerance of UART communication.

14

DYNAMIXEL AX-S1

Address 0x05 Return Delay Time. The time it takes for the Status Packet to return after the Instruction

Packet is sent. The delay time is given by 2uSec * Address5 value.

Address 0x0B the Highest Limit Temperature. The upper limit of the Dynamixel actuator’s operating

temperature. If the internal temperature of the Dynamixel actuator gets higher than this

value, the Over Heating Error Bit (Bit 2 of the Status Packet) will return the value 1, and

an alarm will be set by Address 17, 18. The values are in Degrees Celsius

Address 0x0C,0x0D the Lowest (Highest) Limit Voltage. The upper and lower limits of the Dynamixel

actuator’s operating voltage. If the present voltage (Address 42) is out of the specified

range, a Voltage Range Error Bit (Bit 0 of the Status Packet) will return the value 1,

and an alarm will be set by Address 17, 18. The values are 10 times the actual voltage

value. For example, if the Address 12 value is 80, then the lower voltage limit is set to

8V.

Address 0X10 Status Return Level. Determines whether the Dynamixel actuator will return a Status

Packet after receiving an Instruction Packet.

Address16 Returning the Status Packet

0 Do not respond to any instructions

1 Respond only to READ_DATA instructions

2 Respond to all instructions

 In the case of an instruction which uses the Broadcast ID (0XFE) the Status Packet

will not be returned regardless of the Address 0x10 value.

Address 0x14 Obstacle Detected Compare Value Dynamixel Sensor Module sets the standard value

for the object detection that is in the direct line of object sensor parameter. If the infrared

sensor value is greater than a standard value, as it indicates an obstacle within the set

distance, the bit is set to a value of “1” in corresponding to sensor of IR Obstacle

Detected, Address 0x20, and conversely, when the sensor value is lower than a

standard value, it is set to “0.”

15

DYNAMIXEL AX-S1

 The Obstacle Detected Compare Value is allocated in the ROM (Address 0x14) and

RAM (Address 0x34) and when the power switched on, the value of EEPROM is copied

to RAM.

Address 0x15 Light Detected Compare Value Dynamixel Sensor Module sets the standard value for

the light detection that is in the direct line of infrared sensor parameter. If the light sensor

value is greater than a standard value, as it indicates a light that is brighter than set light

parameter, the bit is set to a value of “1” in corresponding to sensor of Light Detected,

and conversely, it is set to “0” when it is lower than a standard value.

 The Light Detected Compare Value is allocated in the ROM (Address 0x15) and RAM

(Address 0x35) and when the power switched on, the value of EEPROM is copied to

RAM.

 Subsequent Address 0x18 is in RAM domain.

Address 0x1A~0x1C Infrared Sensor Data (Left/Center/Right) It is the infrared sensor value of the

Dynamixel Sensor Module for measuring distance. The infrared sensor of AX-S1 emits

high frequency Infrared and the emitted ray bounces off an object or wall to return to the

IR sensor. The Infrared receiver of AX-S1 measures amount of infrared returned. High

value will be acquired when an object or wall is near the sensor. Measured value ranges

from 0~255. Only 255 will be acquired until a certain distance. Due to the innate

properties of infrared measurement method, value of reflected Infrared ray amount

might differ depending on the color of an object or surface texture.

Address 0x1D~0x1F Luminosity (Left/Center/Right) It is the light sensor value of the Dynamixel Sensor

Module. The technological concept is similar to the infrared sensor. However, this sensor

only measures amount of infrared ray emitted from source of illumination. Therefore,

light sensor value can be measured from illuminations, such as incandescent bulb,

emitting large amount of infrared. Lighter or candle light can be measured from short

distance as well. Measured value ranges from 0~255.

16

DYNAMIXEL AX-S1

Address 0x20 Obstacle Detection Flag When the value of infrared distance sensor becomes larger

than the Obstacle Detected Compare Value, the AX-S1 recognizes existence of an

object and sets object detection bit to 1. Refer to the below table for bit representation of

each sensor.

Bit Representation

Bit 2 An object is detected on the Right Sensor /Light

Detected

Bit 1 An object is detected on the Center Sensor /Light

Detected

Bit 0 An object is detected on the Left Sensor /Light

Detected

Address 0x21 Luminosity Detection Flag When the value of light sensor becomes larger than the

light detected compare value, the AX-S1 recognizes existence of source of illumination

and sets luminosity detection flag bit to 1. Bit representation of each sensor is the same

with bit representation of object detection flag setting. (Refer to Address 0x20)

Address 0x23 Sound Data It represents intensity of sound waves detected through the microphone of

AX-S1. As shown in the illustration below, the magnitude of sound wave fluctuates.

Value measured during noiseless state is around 127~128 (0x7F~0x80) and value

ranging from 0 to 255 (0xFF) will be measured for noisy state. Sound wave will be

measured at the frequency of 3800 input per second.

Time

Sound level

17

DYNAMIXEL AX-S1

Address 0x24 Sound Data Max Hold AX-S1 has put aside a value for loudest sound. That is, when the

present sound data exceeds the Sound Data Max Hold value, the present sound data will

be copied as the Sound Data Max Hold.

Therefore, sound data less than 128 will be ignored and loudest sound intensity will be

updated. Below illustration explains the details.

Be cautious as the Sound Data Max Hold is 255 (0xFF) and there is no value that can

uld be set at “0” for measuring the value

ddress 0x25 Sound Detected Count

represent intensity of loudness greater than the optimal loudness, and thus, 255 (0xFF)

will be maintained as the Sound Data Max Hold.

Therefore, value of the Sound Data Max Hold sho

of maximum loudness,

 AX-S1 has a counter that counts occurrence of loud sound

Time

Sound Data Max Hold

Sound level

A

18

DYNAMIXEL AX-S1

exceeding standard level. As an example, number of handclap can be counted by using

this.

Howe

single handclap to be recognized as multiple claps. 800msec after the last count, the

value of sound detection frequency counter will be saved.

Timeline of sound detection frequency will be counted interna

sound detection frequency will be saved after 800msec. After saving, the sound

detection frequency value will reset to 0. Below illustration explains the details.

ver, the counter will not count for next 80msec after counting once to prevent a

lly and then the value of

ddress 0x26, 0x27 Sound Detected Time

Clap Clap Clap Clap

Sound Detected Count : 0 0 1 1 1 2 2

800msec 800msec

Internal count : 0 1 0 1 2 0 1

A Anytime Sensor Module AX-S1 counts of sound detection, it

 Detected Time is internally counted (counts 0~65535 repeatedly) and anytime

 is face to face, the time differences will be almost simultaneous,

saves the time of sound occurrences. This function exists to detect the direction of

sound, and thus, it needs at least two AX-S1s; and by using speed of sound (around

343m/sec in 20℃) it uses the time differences of sound arrival in microphone of two AX-

S1s.

Sound

Sound Detected Count is increased, it saves the counted value. Therefore, by placing

the two AX-S1s in appropriate distance, and by simultaneously using broadcasting

command and initializing to 0 value, the time differenced sound occurs corresponding to

sound direction.

If the placement

19

DYNAMIXEL AX-S1

however, for the placement that has been set in side angle, the time differences will be

influenced by the distances of AX-S1s. With this concept, it can estimate the direction of

the sound. Below are detailed illustrations.

It counts completely every 4.096msec and it recounts again from 0. Therefore, in

calculating the sound of speed, for every count, sound moves 0.02mm and two AX-S1’s

distance must be within 70cm.

For example, when two AX-S1s is 10cm apart, by using above method estimation, two

ddress 0x28 Buzzer Inde

AX-S1s’ sound detected time difference can be maximum of 5,000. (If it is 5,000, it

signifies that sound source is completely from the 90 angle or from the right side.)

A x All AX-S1 has built-in buzzer and thus, can playback the simple notes.

Buzzer lody

Buzzer can play up to 52 notes and as it has whole and semitone in each octave, it can

playback various melody sounds. The buzzer index value is assigned as follows.

Melody Buzzer Melody Buzzer Melody Buzzer Me

index notes index notes index notes index notes

0 la 13 la# 26 si 39 do

1 la# 14 si 27 do 40 do#

2 si 15 do 28 do# 41 re

3 do 16 do# re# 29 re 42

4 do# 17 re 30 re# 43 mi

5 re 18 re# 31 mi 44 fa

6 re# fa# 19 mi 32 fa 45

7 mi 20 fa 33 fa# 46 sol

8 fa 21 fa# s34 sol 47 ol#

9 fa# s22 sol 35 ol# 48 la

(1) Sound from angle (2) Sound from front

Sound source Sound source

AX-S1 AX-S1

Time difference

as much as

distance

20

DYNAMIXEL AX-S1

10 sol 23 sol# 36 la 49 la#

11 sol# 24 la 37 la# 50 si

12 la 25 la# 38 si 51 do

Address 0x29 Buzze mer Ti AX- as a c ity tha trols the e interv f buzze d.

tantly. If user inputs value of 254

e of 255 on buzzer

ddress 0x2A Present Voltage

S1 h apabil t con tim al o r soun

Controllable within 0.1 second unit, the minimum length of time is 0.3 second and the

maximum length of time is 5.0 seconds. That is, if user inputs the value of 0~3, the

buzzer goes off in 0.3 second, whereas, if the input value is 50 or above, it goes off in 5

second. When the buzzer sound completes, the value automatically initializes back to 0.

There are two special features of AX-S1 buzzer time.

First is the function that sets the buzzer to sound cons

on buzzer time and input the melody note number on buzzer index, the buzzer sounds

the note constantly. To stop the buzzer, input 0 on buzzer time.

The second function plays back the special notes. If user inputs valu

time and value between 0~26 on buzzer index, 27 various melodies is replayed

corresponding to each number. When the melody playback is finished, the value

automatically initializes back to 0.

A . Currently authorized voltage of Dynamixel AX-S1. It reality, it is

ddress 0x2B Present Temperature

multiple of 10 of actual voltage. That is, if 10V, it is read as 100(0x64).

A . Inner Celsius temperature of Dynamixel AX-S1

ddress 0x2C Registered Instruction

A . If it is registered by the command of REG_WRITE, it is set to 1,

ddress 0x2E IR Remocon Arrived

and if it is registered by Action command, it is changed to 0 after command is completed.

A AX-S1 Sensor Module has infrared sensor module built-in in

 the infrared emitter is built into left/center/right, it can transmit

I Arrived value changes

center and thus, it allows infrared remocon communication between AX-S1’s. 2 byte

transmission is possible.

Be cautious, however, as

infrared remocon in all directions, but, as infrared remocon sensor is built in only in

center, its remocon data transmission is limited to certain angle.

When Infrared remocon data is received by sensor, IR Remocon

to 2, signaling 2 byte transmission. If you read IR Remocon RX data, the IR Remocon

21

DYNAMIXEL AX-S1

and automatically initializes back to 0.

ddress 0x2F Lock.

A If the setting is set to 1, it can only write in range from Address 0X18 to

ddress 0x30,0x31 IR Remocon RX Data

Address0x23 and writing to other ranges is forbidden. Once it is locked, it can be

unlocked only after power off. (power down)

A Address where data from infrared remocon sensor is saved. It

ddress 0x32,0x33 IR Remocon TX Data

reads the value and the IR Remocon Arrived value automatically initializes back to 0.

A Address where remocon data that will be transmitted via infrared

ddress 0x34 Obstacle Detected Compare Value

emitter is written to. Upon writing of 2 byte value, remocon data is immediately

transmitted.

A Control Table RAM Range where obstacle detected

 nfrared rays to detect an object at a long

 e to detect precise value in a short

ddress 0x35 Light Detected Compare Value

compare value of Address 0x14 is saved.

The IR sensors of AX-S1 emit powerful i

distance. It is impossible to detect an object in a short distance around 5cm since

it always has maximum value in short distance

To prevent this, AX-S1 support low sensitive mod

distance. If the Obstacle Detected Compare Value is 0, it converts to low sensitive mode.

The low sensitive mode has very weak long-distance sensing capability but it is possible

to detect precise and sensitive short-distance detection not to saturate maximum value.

A Control Table RAM Range where light detected

compare value of Address 0x15 is saved

22

DYNAMIXEL AX-S1

Range Each data has set value where their valid range is defined. Outside of this range, their

Write Length

write command will return Error. Below table indicates the length for writing and its range.

16 bit data is indicated (L) and (H) and as 2 byte. This 2 byte must be written as one in

instruction packet.

Address
Writing Item

(bytes)
Min Max

3(0X03) ID 1 0 253(0xfd)

4(0X04) Baud Rate 1 0 254(0xfe)

5(0X05) Return Delay Time 1 0 254(0xfe)

11(0X0B) the Highest Limit Temperature 1 0 150(0x96)

12(0X0C) the Lowest Limit Voltage 1 50(0x32) 250(0xfa)

13(0X0D) the Highest Limit Voltage 1 50(0x32) 250(0xfa)

16(0X10) Status Return Level 1 0 2

17(0X11) Alarm LED 1 0 127(0x7f)

18(0X12) Alarm Shutdown 1 0 127(0x7f)

19(0X13) (Reserved) 1 0 1

20(0X14) Obstacle Detected Compare 1 0 255(0xff)

21(0X15) Light Detected Compare 1 0 255(0xff)

36(0X24) Sound Data Max Hold 1 0 255(0xff)

37(0X25) Sound Detected Count 1 0 255(0xff)

38(0X26) Sound Detected Time 2 0 65535(0xffff)

40(0X28) Buzzer Index 1 0 255(0xff)

41(0X29) Buzzer Time 1 0 255(0xff)

44(0X2C) Registered Instruction 1 0 1

47(0X2F) Lock 1 1 1

50(0X32) IR Remocon TX Data 2 0 65535(0xffff)

[Control Table Data Range and Length for Writing]

23

DYNAMIXEL AX-S1

4. Instruction Set and Examples

 The following Instructions are available.

Instruction Function Value Number of

Parameter

PING No action. Used for obtaining a Status Packet 0x01 0

READ DATA Reading values in the Control Table 0x02 2

WRITE DATA Writing values to the Control Table 0x03 2 ~

REG WRITE Similar to WRITE_DATA, but stays in standby
mode until the ACION instruction is given 0x04 2 ~

ACTION Triggers the action registered by the
REG_WRITE instruction 0x05 0

RESET
Changes the control table values of the
Dynamixel actuator to the Factory Default Value
settings

0x06 0

SYNC WRITE Used for controlling many Dynamixel actuators
at the same time 0x83 4~

4-1. WRITE_DATA

Function To write data into the control table of the Dynamixel actuator

Length N+3 (N is the number of data to be written)

Instruction 0X03

Parameter1 Starting address of the location where the data is to be written

Parameter2 1st data to be written

Parameter3 2nd data to be written

Parameter N+1 Nth data to be written

24

DYNAMIXEL AX-S1

Example 1 Setting the ID of a connected Dynamixel actuator to 1

 Write 1 to address 3 of the control table. The ID is transmitted using the Broadcasting ID

(0xFE).

 Instruction Packet : 0XFF 0XFF 0XFE 0X04 0X03 0X03 0X01 0XF6`

 ID LENGTH INSTRUCTION PARAMETERS CHECKSUM

 Because it was transmitted with a Broadcast ID (0XFE), no status packets are returned.

4-2. READ_DATA

Function Read data from the control table of a Dynamixel actuator

Length 0X04

Instruction 0X02

Parameter1 Starting address of the location where the data is to be read

Parameter2 Length of the data to be read

Example 2 Reading the internal temperature of the Dynamixel actuator with an ID of 1

Read 1 byte from address 0x2B of the control table.

Instruction Packet : 0XFF 0XFF 0X01 0X04 0X02 0X2B 0X01 0XCC`

 ID LENGTH INSTRUCTION PARAMETERS . CHECKSUM

The returned Status Packet will be as the following.

 Status Packet : 0XFF 0XFF 0X01 0X03 0X00 0X20 0XDB

 ID LENGTH ERROR PARAMETER1 CHECKSUM

 The data read is 0x20. Thus the current internal temperature of the Dynamixel actuator

is approximately 32°C (0X20).

25

DYNAMIXEL AX-S1

4-3. REG_WRITE과 ACTION

4-3-1. REG_WRITE

Function The REG_WRITE instruction is similar to the WRITE_DATA instruction, but the

execution timing is different. When the Instruction Packet is received the values are

stored in the Buffer and the Write instruction is under a standby status. At this time, the

Registered Instruction register (Address 0x2C) is set to 1. After the Action Instruction

Packet is received, the registered Write instruction is finally executed.

Length N+3 (N is the number of data to be written)

Instruction 0X04

Parameter1 Starting address of the location where the data is to be written

Parameter2 1st data to be written

Parameter3 2nd data to be written

Parameter N+1 Nth data to be written

4-3-2. ACTION

Function Triggers the action registered by the REG_WRITE instruction

Length 0X02

Instruction 0X05

Parameter NONE

The ACTION instruction is useful when multiple Dynamixel actuators need to move

simultaneously. When controlling multiple Dynamixel actuator units, slight time delays

can occur between the 1st and last units to receive an instruction. The Dynamixel

actuator handles this problem by using the ACTION instruction.

Broadcasting The Broadcast ID (0XFE) is used when sending ACTION instructions to more than two

Dynamixel actuators. Note that no packets are returned by this operation.

26

DYNAMIXEL AX-S1

4-4. PING

Function Does not command any operations. Used for requesting a status packet or to check the

existence of a Dynamixel actuator with a specific ID.

Length 0X02

Instruction 0X01

Parameter NONE

Example 3 Obtaining the status packet of the Dynamixel actuator with an ID of 1

 Instruction Packet : 0XFF 0XFF 0X01 0X02 0X01 0XFB`

 ID LENGTH INSTRUCTION CHECKSUM

The returned Status Packet is as the following

Status Packet : 0XFF 0XFF 0X01 0X02 0X00 0XFC

 ID LENGTH ERROR CHECKSUM

 Regardless of whether the Broadcasting ID is used or the Status Return Level (Address

16) is 0, a Status Packet is always returned by the PING instruction.

4-5. RESET

Function Changes the control table values of the Dynamixel actuator to the Factory Default Value

settings

Length 0X02

Instruction 0X06

Parameter NONE

27

DYNAMIXEL AX-S1

Resetting the Dynamixel actuator with an ID of 0

 Instruction Packet : 0XFF 0XFF 0X00 0X02 0X06 0XF7`

 ID LENGTH INSTRUCTION CHECKSUM

 The returned Status Packet is as the following

 Status Packet : 0XFF 0XFF 0X00 0X02 0X00 0XFD

 ID LENGTH ERROR CHECKSUM

Note the ID of this Dynamixel actuator is now changed to 1 after the RESET instruction

4-6. SYNC WRITE

Function Used for controlling many Dynamixel actuators at the same time. The communication

time decreases by the Synch Write instruction since many instructions can be

transmitted by a single instruction. However, you can use this instruction only when the

lengths and addresses of the control table to be written to are the same. Also, the

broadcasting ID needs to be used for transmitting.

ID 0XFE

Length (L + 1) * N + 4 (L: Data length for each Dynamixel actuator, N: The number of Dynamixel

actuators)

Instruction 0X83

Parameter1 Starting address of the location where the data is to be written

Parameter2 The length of the data to be written (L)

Parameter3 The ID of the 1st Dynamixel actuator

Parameter4 The 1st data for the 1st Dynamixel actuator

Parameter5 The 2nd data for the 1st Dynamixel actuator Data for the 1st Dynamixel actuator
…
Parameter L+3 The Lth data for the 1st Dynamixel actuator

Parameter L+4 The ID of the 2nd Dynamixel actuator

Parameter L+5 The 1st data for the 2nd Dynamixel actuator
Data for the 2nd Dynamixel actuatorParameter L+6 The 2nd data for the 2nd Dynamixel actuator
 …

Parameter 2L+4 The Lth data for the 2nd Dynamixel actuator

28

DYNAMIXEL AX-S1

Example 5 Setting the following positions and velocities for 4 Dynamixel actuators

 Dynamixel actuator with an ID of 0: to position 0X010 with a speed of 0X150

Dynamixel actuator with an ID of 1: to position 0X220 with a speed of 0X360

Dynamixel actuator with an ID of 2: to position 0X030 with a speed of 0X170

Dynamixel actuator with an ID of 0: to position 0X220 with a speed of 0X380

Instruction Packet : 0XFF 0XFF 0XFE 0X18 0X83 0X1E 0X04 0X00 0X10 0X00 0X50

0X01 0X01 0X20 0X02 0X60 0X03 0X02 0X30 0X00 0X70 0X01 0X03 0X20 0X02 0X80

0X03 0X12

No status packets are returned since the Broadcasting ID was used.

29

DYNAMIXEL AX-S1

5. Example

 We will give an example of Dynamixel AX-S1 with following setup parameter. Reset

state ID=100, Baudrate = 1MBPS

.

Example 6 Dynamixel AX-S1 that has ID 100 reads the Model Number and Firmware Version

Instruction Packet Instruction = READ_DATA, Address = 0x00, Length = 0x03

Communication ->[Dynamixel]:FF FF 64 04 02 00 03 95 (LEN:008)
 <-[Dynamixel]:FF FF 64 05 00 0D 00 12 77 (LEN:009)

Status Packet Result Model Number = 13(0x0D)(in case of AX-S1) Firmware Version = 0x12

Example 7 Dynamixel AX-S1 that has ID 100 changes ID to 0.

Instruction Packet Instruction = WRITE_DATA, Address = 0x03, DATA = 0x00

Communication ->[Dynamixel]:FF FF 64 04 03 03 00 91 (LEN:008)
 <-[Dynamixel]:FF FF 64 02 00 99 (LEN:006)

Status Packet Result NO ERROR

Example 8 Change the Baud Rate of Dynamixel to 57600 bps.

Instruction Packet Instruction = WRITE_DATA, Address = 0x04, DATA = 0x22

Communication ->[Dynamixel]:FF FF 64 04 03 04 22 6E (LEN:008)
 <-[Dynamixel]:FF FF 64 02 00 99 (LEN:006)

Status Packet Result NO ERROR

30

DYNAMIXEL AX-S1

Example 9 Dynamixel that has ID 100 resets the Return Delay Time to 4uSec
 Return Delay Time Value of 1 is applicable to 2uSec.
Instruction Packet Instruction = WRITE_DATA, Address = 0x05, DATA = 0x02

Communication ->[Dynamixel]:FF FF 64 04 03 05 02 8D (LEN:008)
 <-[Dynamixel]:FF FF 64 02 00 99 (LEN:006)

Status Packet Result NO ERROR

 It is good idea to set the Return Delay Time to minimum value within allowable range in

the main controller.

Example 10 Dynamixel that has ID 100 resets the distance sensor standard value to 60.

Instruction Packet Instruction = WRITE_DATA, Address = 0x34, DATA = 0x3C

Communication ->[Dynamixel]:FF FF 64 04 03 34 3C 24 (LEN:008)
 <-[Dynamixel]:FF FF 64 02 00 99 (LEN:006)

Status Packet Result NO ERROR

Example 11 Dynamixel that has ID 100 resets the maximum value of temperature to 80°

Instruction Packet Instruction = WRITE_DATA, Address = 0x0B, DATA = 0x50

Communication ->[Dynamixel]:FF FF 64 04 03 0B 50 39 (LEN:008)
 <-[Dynamixel]:FF FF 64 02 00 99 (LEN:006)

Status Packet Result NO ERROR

Example 12 Dynamixel that has ID 100 sets the voltage to 10V ~ 17V.
 10V is represented by 100 (0x64), and 17V by 170 (0xAA).

Instruction Packet Instruction = WRITE_DATA, Address = 0x0C, DATA = 0x64, 0xAA

Communication ->[Dynamixel]:FF FF 64 05 03 0C 64 AA 79 (LEN:009)
 <-[Dynamixel]:FF FF 64 02 00 99 (LEN:006)

Status Packet Result NO ERROR

31

DYNAMIXEL AX-S1

Example 13 Dynamixel that has ID 100 changes the light sensor standard value to 10..

Instruction Packet Instruction = WRITE_DATA, Address = 0x35, DATA = 0x0A

Communication ->[Dynamixel]:FF FF 64 04 03 35 0A 55 (LEN:08)
 <-[Dynamixel]:FF FF 64 02 00 99 (LEN:006)

Status Packet Result NO ERROR

Example 14 Dynamixel that has ID 100 sets the parameter so that status packet is never

returned.

Instruction Packet Instruction = WRITE_DATA, Address = 0x10, DATA = 0x00

Communication ->[Dynamixel]:FF FF 64 04 03 10 00 84 (LEN:008)
 <-[Dynamixel]:FF FF 64 02 00 99 (LEN:006)

Status Packet Result NO ERROR

 Status packet is not returned from next instruction.

Example 15 Dynamixel AX-S1 that has ID100 reads the right distance sensor value

Instruction Packet Instruction = READ_DATA, Address = 0x1C, DATA = 0x01

Communication ->[Dynamixel]:FF FF 64 04 02 1C 01 78 (LEN:008)
 <-[Dynamixel]:FF FF 64 03 00 21 77 (LEN:007)

Status Packet Result NO ERROR

The right distance sensor value is 0x21

32

DYNAMIXEL AX-S1

Example 16 Dynamixel AX-S1 that has ID 100 reads the center light sensor value

Instruction Packet Instruction = READ_DATA, Address = 0x1E, DATA = 0x01

Communication ->[Dynamixel]:FF FF 64 04 02 1E 01 76 (LEN:008)
 <-[Dynamixel]:FF FF 64 03 00 00 98 (LEN:007)

Status Packet Result NO ERROR

 The center light sensor value is 0x00

Example 17 Dynamixel AX-S1 that has ID 100 reads the sound loudness

Instruction Packet Instruction = READ_DATA, Address = 0x23, DATA = 0x01

Communication ->[Dynamixel]:FF FF 64 04 02 23 01 71 (LEN:08)
 <-[Dynamixel]:FF FF 64 03 00 7E 1A (LEN:007)

Status Packet Result NO ERROR

 The sound loudness value is 0x7E (126)

Example 18 Dynamixel AX-S1 that has ID 100 reads the numbers of sound detect frequency

Instruction Packet Instruction = READ_DATA, Address = 0x25, DATA = 0x01

Communication ->[Dynamixel]:FF FF 64 04 02 25 01 6F (LEN:008)
 <-[Dynamixel]:FF FF 64 03 00 02 96 (LEN:007)

Status Packet Result NO ERROR

The number of sound detect frequency is 2.

Example 19 Dynamixel AX-S1 that has ID 100 playbacks special melody 5 times through buzzer

.

Case 1. After writing 0xFF(255) on buzzer sound interval, it writes No. 5 on buzzer note

melody.

Instruction Packet ID=100, Instruction = WRITE_DATA, Address = 0x29, DATA = 0xFF

33

DYNAMIXEL AX-S1

 ID=100, Instruction = WRITE_DATA, Address = 0x28, DATA = 0x05

Communication ->[Dynamixel]:FF FF 64 04 03 29 FF 6C (LEN:008)
 <-[Dynamixel]:FF FF 64 02 00 99 (LEN:006)
 ->[Dynamixel]:FF FF 64 04 03 28 05 67 (LEN:008)
 <-[Dynamixel]:FF FF 64 02 00 99 (LEN:006)

Status Packet Result NO ERROR

Case 2. Writes buzzer note and buzzer sound interval simultaneously

Instruction Packet ID=100, Instruction = WRITE_DATA, Address = 0x28, DATA = 0x05, 0xFF

Communication ->[Dynamixel]:FF FF 64 05 03 28 05 FF 67 (LEN:009)
 <-[Dynamixel]:FF FF 64 02 00 99 (LEN:006)

Status Packet Result NO ERROR

Example 20 Dynamixel that has ID 0 sets the parameter so that it cannot write anywhere except in

Address0x18 ~ Address0x23

Instruction Packet Instruction = WRITE_DATA, Address = 0x2F, DATA = 0x01

Communication ->[Dynamixel]:FF FF 00 04 03 2F 01 C8 (LEN:008)
 <-[Dynamixel]:FF FF 00 02 00 FD (LEN:006)

Status Packet Result NO ERROR

 Once locked, the only way to unlock it is to remove the power.

If an attempt is made to access any locked data, an error is returned.

 ->[Dynamixel]:FF FF 00 05 03 30 40 00 87 (LEN:009)
 <-[Dynamixel]:FF FF 00 02 08 F5 (LEN:006)

Range Error

34

DYNAMIXEL AX-S1

Example 21 Dynamixel that has ID 0 sets the minimum output value (punch) to 0x40

Instruction Packet Instruction = WRITE_DATA, Address = 0x30, DATA = 0x40, 0x00

Communication ->[Dynamixel]:FF FF 00 05 03 30 40 00 87 (LEN:009)
 <-[Dynamixel]:FF FF 00 02 00 FD (LEN:006)

Status Packet Result NO ERROR

35

DYNAMIXEL AX-S1

Appendix

Half duplex UART Half duplex UART is a serial communication protocol where both TxD and RxD cannot

be used at the same time. This method is generally used when many devices need to

be connected to a single bus. Since more than one device are connected to the same

bus, all the other devices need to be in input mode while one device is transmitting. The

Main Controller that controllers the Dynamixel actuators sets the communication

direction to input mode, and only when it is transmitting an Instruction Packet, it

changes the direction to output mode.

Instruction Packet Status Packet

Return Delay Time

RS485 Direction Output Duration

Return Delay Time The time it takes for the Dynamixel actuator to return the Status Packet after receiving

an Instruction Packet. The Default Value is 160 uSec and can be changed via the
Control Table at Address 5. The Main Controller needs to change the Direction Port to
input mode during the Return Delay Time after sending an instruction packet.

Tx,Rx Direction For Half Duplex UART, the transmission ending timing is important to change the

direction to receiving mode. The bit definitions within the register that indicates
UART_STATUS are as the following

TXD_BUFFER_READY_BIT: Indicates that the transmission DATA can be loaded into

the Buffer. Note that this only means that the SERIAL TX BUFFER is empty, and does

not necessarily mean that the all the data transmitted before has left the CPU.

TXD_SHIFT_REGISTER_EMPTY_BIT: Set when all the Transmission Data has

completed its transmission and left the CPU.

The TXD_BUFFER_READY_BIT is used when one byte is to be transmitted via the

serial communication channel, and an example is shown below.
TxDByte(byte bData)
 {
 while(!TXD_BUFFER_READY_BIT); //wait until data can be loaded.
 SerialTxDBuffer = bData; //data load to TxD buffer
 }

36

DYNAMIXEL AX-S1

 When changing the direction, the TXD_SHIFT_REGISTER_EMPTY_BIT must be

checked.

 The following is an example program that sends an Instruction Packet.

LINE 1 DIRECTION_PORT = TX_DIRECTION;
LINE 2 TxDByte(0xff);
LINE 3 TxDByte(0xff);
LINE 4 TxDByte(bID);
LINE 5 TxDByte(bLength);
LINE 6 TxDByte(bInstruction);
LINE 7 TxDByte(Parameter0); TxDByte(Parameter1); …
LINE 8 DisableInterrupt(); // interrupt should be disable
LINE 9 TxDByte(Checksum); //last TxD
LINE 10 while(!TXD_SHIFT_REGISTER_EMPTY_BIT); //Wait till last data bit has been sent
LINE 11 DIRECTION_PORT = RX_DIRECTION; //Direction change to RXD
LINE 12 EnableInterrupt(); // enable interrupt again

 Please note the important lines between LINE 8 and LINE 12. Line 8 is necessary since

an interrupt here may cause a delay longer than the return delay time and corruption to

the front of the status packet may occur.

Byte to Byte Time The delay time between bytes when sending an instruction packet. If the delay time is

over 100ms, then the Dynamixel actuator recognizes this as a communication problem

and waits for the next header (0xff 0xff) of a packet again.

0xFF 0xFF ID Length

 Byte To Byte Time

 The following is the source code of a program (Example.c) that accesses the

Dynamixel actuator using the Atmega 128.

37

DYNAMIXEL AX-S1

C Language Example : Dinamixel access with Atmega128

/*
 * The Example of Dynamixel Evaluation with Atmega128
 * Date : 2005.5.11
 * Author : BS KIM
 */

/*
 * included files
 */
#define ENABLE_BIT_DEFINITIONS
//#include <io.h>
#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/signal.h>

#define cbi(REG8,BITNUM) REG8 &= ~(_BV(BITNUM))
#define sbi(REG8,BITNUM) REG8 |= _BV(BITNUM)

typedef unsigned char byte;
typedef unsigned int word;
#define ON 1
#define OFF 0
#define _ON 0
#define _OFF 1

//--- Control Table Address ---
//EEPROM AREA
#define P_MODEL_NUMBER_L 0
#define P_MODOEL_NUMBER_H 1
#define P_VERSION 2
#define P_ID 3
#define P_BAUD_RATE 4
#define P_RETURN_DELAY_TIME 5
#define P_CW_ANGLE_LIMIT_L 6
#define P_CW_ANGLE_LIMIT_H 7
#define P_CCW_ANGLE_LIMIT_L 8
#define P_CCW_ANGLE_LIMIT_H 9
#define P_SYSTEM_DATA2 10
#define P_LIMIT_TEMPERATURE 11
#define P_DOWN_LIMIT_VOLTAGE 12
#define P_UP_LIMIT_VOLTAGE 13
#define P_MAX_TORQUE_L 14
#define P_MAX_TORQUE_H 15
#define P_RETURN_LEVEL 16
#define P_ALARM_LED 17
#define P_ALARM_SHUTDOWN 18
#define P_OPERATING_MODE 19
#define P_DOWN_CALIBRATION_L 20
#define P_DOWN_CALIBRATION_H 21
#define P_UP_CALIBRATION_L 22
#define P_UP_CALIBRATION_H 23

#define P_TORQUE_ENABLE (24)
#define P_LED (25)
#define P_CW_COMPLIANCE_MARGIN (26)
#define P_CCW_COMPLIANCE_MARGIN (27)
#define P_CW_COMPLIANCE_SLOPE (28)
#define P_CCW_COMPLIANCE_SLOPE (29)
#define P_GOAL_POSITION_L (30)
#define P_GOAL_POSITION_H (31)
#define P_GOAL_SPEED_L (32)
#define P_GOAL_SPEED_H (33)
#define P_TORQUE_LIMIT_L (34)
#define P_TORQUE_LIMIT_H (35)
#define P_PRESENT_POSITION_L (36)
#define P_PRESENT_POSITION_H (37)
#define P_PRESENT_SPEED_L (38)
#define P_PRESENT_SPEED_H (39)
#define P_PRESENT_LOAD_L (40)
#define P_PRESENT_LOAD_H (41)
#define P_PRESENT_VOLTAGE (42)
#define P_PRESENT_TEMPERATURE (43)
#define P_REGISTERED_INSTRUCTION (44)
#define P_PAUSE_TIME (45)
#define P_MOVING (46)
#define P_LOCK (47)
#define P_PUNCH_L (48)
#define P_PUNCH_H (49)

//--- Instruction ---
#define INST_PING 0x01

#define INST_READ 0x02
#define INST_WRITE 0x03
#define INST_REG_WRITE 0x04
#define INST_ACTION 0x05
#define INST_RESET 0x06
#define INST_DIGITAL_RESET 0x07
#define INST_SYSTEM_READ 0x0C
#define INST_SYSTEM_WRITE 0x0D
#define INST_SYNC_WRITE 0x83
#define INST_SYNC_REG_WRITE 0x84

#define CLEAR_BUFFER gbRxBufferReadPointer = gbRxBufferWritePointer
#define DEFAULT_RETURN_PACKET_SIZE 6
#define BROADCASTING_ID 0xfe

#define TxD8 TxD81
#define RxD8 RxD81

//Hardware Dependent Item
#define DEFAULT_BAUD_RATE 34 //57600bps at 16MHz

////// For CM-5
#define RS485_TXD PORTE &= ~_BV(PE3),PORTE |= _BV(PE2)

//PORT_485_DIRECTION = 1
#define RS485_RXD PORTE &= ~_BV(PE2),PORTE |= _BV(PE3)

//PORT_485_DIRECTION = 0
/*
////// For CM-2
#define RS485_TXD PORTE |= _BV(PE2); //_485_DIRECTION = 1
#define RS485_RXD PORTE &= ~_BV(PE2);//PORT_485_DIRECTION = 0
*/
//#define TXD0_FINISH UCSR0A,6 //This bit is for checking TxD Buffer in

CPU is empty or not.
//#define TXD1_FINISH UCSR1A,6

#define SET_TxD0_FINISH sbi(UCSR0A,6)
#define RESET_TXD0_FINISH cbi(UCSR0A,6)
#define CHECK_TXD0_FINISH bit_is_set(UCSR0A,6)
#define SET_TxD1_FINISH sbi(UCSR1A,6)
#define RESET_TXD1_FINISH cbi(UCSR1A,6)
#define CHECK_TXD1_FINISH bit_is_set(UCSR1A,6)

#define RX_INTERRUPT 0x01
#define TX_INTERRUPT 0x02
#define OVERFLOW_INTERRUPT 0x01
#define SERIAL_PORT0 0
#define SERIAL_PORT1 1
#define BIT_RS485_DIRECTION0 0x08 //Port E
#define BIT_RS485_DIRECTION1 0x04 //Port E

#define BIT_ZIGBEE_RESET PD4 //out : default 1 //PORTD
#define BIT_ENABLE_RXD_LINK_PC PD5 //out : default 1
#define BIT_ENABLE_RXD_LINK_ZIGBEE PD6 //out : default 0
#define BIT_LINK_PLUGIN PD7 //in, no pull up

void TxD81(byte bTxdData);
void TxD80(byte bTxdData);
void TxDString(byte *bData);
void TxD8Hex(byte bSentData);
void TxD32Dec(long lLong);
byte RxD81(void);
void MiliSec(word wDelayTime);
void PortInitialize(void);
void SerialInitialize(byte bPort, byte bBaudrate, byte bInterrupt);
byte TxPacket(byte bID, byte bInstruction, byte bParameterLength);
byte RxPacket(byte bRxLength);
void PrintBuffer(byte *bpPrintBuffer, byte bLength);

// --- Gloval Variable Number ---
volatile byte gbpRxInterruptBuffer[256];
byte gbpParameter[128];
byte gbRxBufferReadPointer;
byte gbpRxBuffer[128];
byte gbpTxBuffer[128];
volatile byte gbRxBufferWritePointer;

int main(void)
{
 byte bCount,bID, bTxPacketLength,bRxPacketLength;

 PortInitialize(); //Port In/Out Direction Definition
 RS485_RXD; //Set RS485 Direction to Input State.
 SerialInitialize(SERIAL_PORT0,1,RX_INTERRUPT);//RS485

Initializing(RxInterrupt)
 SerialInitialize(SERIAL_PORT1,DEFAULT_BAUD_RATE,0); //RS232

38

DYNAMIXEL AX-S1

Initializing(None Interrupt)

 gbRxBufferReadPointer = gbRxBufferWritePointer = 0; //RS485 RxBuffer

Clearing.

 sei(); //Enable Interrupt -- Compiler Function
 TxDString("\r\n [The Example of Dynamixel Evaluation with

ATmega128,GCC-AVR]");

//Dynamixel Communication Function Execution Step.
// Step 1. Parameter Setting (gbpParameter[]). In case of no parameter

instruction(Ex. INST_PING), this step is not needed.
// Step 2. TxPacket(ID,INSTRUCTION,LengthOfParameter); --Total TxPacket

Length is returned
// Step 3. RxPacket(ExpectedReturnPacketLength); -- Real RxPacket Length is

returned
// Step 4 PrintBuffer(BufferStartPointer,LengthForPrinting);

 bID = 1;
 TxDString("\r\n\n Example 1. Scanning Dynamixels(0~9). -- Any Key to

Continue."); RxD8();
 for(bCount = 0; bCount < 0x0A; bCount++)
 {
 bTxPacketLength = TxPacket(bCount,INST_PING,0);
 bRxPacketLength = RxPacket(255);
 TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength);
 TxDString(", RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);
 if(bRxPacketLength == DEFAULT_RETURN_PACKET_SIZE)
 {
 TxDString(" Found!! ID:");TxD8Hex(bCount);
 bID = bCount;
 }
 }

 TxDString("\r\n\n Example 2. Read Firmware Version. -- Any Key to

Continue."); RxD8();
 gbpParameter[0] = P_VERSION; //Address of Firmware Version
 gbpParameter[1] = 1; //Read Length
 bTxPacketLength = TxPacket(bID,INST_READ,2);
 bRxPacketLength =

RxPacket(DEFAULT_RETURN_PACKET_SIZE+gbpP
arameter[1]);

 TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength);
 TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);
 if(bRxPacketLength ==

DEFAULT_RETURN_PACKET_SIZE+gbpParameter[
1])

 {
 TxDString("\r\n Return Error : ");TxD8Hex(gbpRxBuffer[4]);
 TxDString("\r\n Firmware Version : ");TxD8Hex(gbpRxBuffer[5]);
 }

 TxDString("\r\n\n Example 3. LED ON -- Any Key to Continue."); RxD8();
 gbpParameter[0] = P_LED; //Address of LED
 gbpParameter[1] = 1; //Writing Data
 bTxPacketLength = TxPacket(bID,INST_WRITE,2);
 bRxPacketLength = RxPacket(DEFAULT_RETURN_PACKET_SIZE);
 TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength);
 TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);

 TxDString("\r\n\n Example 4. LED OFF -- Any Key to Continue."); RxD8();
 gbpParameter[0] = P_LED; //Address of LED
 gbpParameter[1] = 0; //Writing Data
 bTxPacketLength = TxPacket(bID,INST_WRITE,2);
 bRxPacketLength = RxPacket(DEFAULT_RETURN_PACKET_SIZE);
 TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength);
 TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);

 TxDString("\r\n\n Example 5. Read Control Table. -- Any Key to Continue.");

RxD8();
 gbpParameter[0] = 0; //Reading Address
 gbpParameter[1] = 49; //Read Length
 bTxPacketLength = TxPacket(bID,INST_READ,2);
 bRxPacketLength =

RxPacket(DEFAULT_RETURN_PACKET_SIZE+gbpP
arameter[1]);

 TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength);
 TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);
 if(bRxPacketLength ==

DEFAULT_RETURN_PACKET_SIZE+gbpParameter[
1])

 {
 TxDString("\r\n");
 for(bCount = 0; bCount < 49; bCount++)
 {
 TxD8('[');TxD8Hex(bCount);TxDString("]:");

TxD8Hex(gbpRxBuffer[bCount+5]);TxD8(' ');
 }
 }

 TxDString("\r\n\n Example 6. Go 0x200 with Speed 0x100 -- Any Key to

Continue."); RxD8();
 gbpParameter[0] = P_GOAL_POSITION_L; //Address of Firmware Version
 gbpParameter[1] = 0x00; //Writing Data P_GOAL_POSITION_L
 gbpParameter[2] = 0x02; //Writing Data P_GOAL_POSITION_H
 gbpParameter[3] = 0x00; //Writing Data P_GOAL_SPEED_L
 gbpParameter[4] = 0x01; //Writing Data P_GOAL_SPEED_H
 bTxPacketLength = TxPacket(bID,INST_WRITE,5);
 bRxPacketLength = RxPacket(DEFAULT_RETURN_PACKET_SIZE);
 TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength);
 TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);

 TxDString("\r\n\n Example 7. Go 0x00 with Speed 0x40 -- Any Key to

Continue."); RxD8();
 gbpParameter[0] = P_GOAL_POSITION_L; //Address of Firmware Version
 gbpParameter[1] = 0x00; //Writing Data P_GOAL_POSITION_L
 gbpParameter[2] = 0x00; //Writing Data P_GOAL_POSITION_H
 gbpParameter[3] = 0x40; //Writing Data P_GOAL_SPEED_L
 gbpParameter[4] = 0x00; //Writing Data P_GOAL_SPEED_H
 bTxPacketLength = TxPacket(bID,INST_WRITE,5);
 bRxPacketLength = RxPacket(DEFAULT_RETURN_PACKET_SIZE);
 TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength);
 TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);

 TxDString("\r\n\n Example 8. Go 0x3ff with Speed 0x3ff -- Any Key to

Continue."); RxD8();
 gbpParameter[0] = P_GOAL_POSITION_L; //Address of Firmware Version
 gbpParameter[1] = 0xff; //Writing Data P_GOAL_POSITION_L
 gbpParameter[2] = 0x03; //Writing Data P_GOAL_POSITION_H
 gbpParameter[3] = 0xff; //Writing Data P_GOAL_SPEED_L
 gbpParameter[4] = 0x03; //Writing Data P_GOAL_SPEED_H
 bTxPacketLength = TxPacket(bID,INST_WRITE,5);
 bRxPacketLength = RxPacket(DEFAULT_RETURN_PACKET_SIZE);
 TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength);
 TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);

 TxDString("\r\n\n Example 9. Torque Off -- Any Key to Continue."); RxD8();
 gbpParameter[0] = P_TORQUE_ENABLE; //Address of LED
 gbpParameter[1] = 0; //Writing Data
 bTxPacketLength = TxPacket(bID,INST_WRITE,2);
 bRxPacketLength = RxPacket(DEFAULT_RETURN_PACKET_SIZE);
 TxDString("\r\n TxD:"); PrintBuffer(gbpTxBuffer,bTxPacketLength);
 TxDString("\r\n RxD:"); PrintBuffer(gbpRxBuffer,bRxPacketLength);

 TxDString("\r\n\n End. Push reset button for repeat");
 while(1);
}

void PortInitialize(void)
{
 DDRA = DDRB = DDRC = DDRD = DDRE = DDRF = 0; //Set all port to

input direction first.
 PORTB = PORTC = PORTD = PORTE = PORTF = PORTG = 0x00;

//PortData initialize to 0
 cbi(SFIOR,2); //All Port Pull Up ready
 DDRE |= (BIT_RS485_DIRECTION0|BIT_RS485_DIRECTION1); //set

output the bit RS485direction

 DDRD |=

(BIT_ZIGBEE_RESET|BIT_ENABLE_RXD_LINK_PC|
BIT_ENABLE_RXD_LINK_ZIGBEE);

 PORTD &= ~_BV(BIT_LINK_PLUGIN); // no pull up
 PORTD |= _BV(BIT_ZIGBEE_RESET);
 PORTD |= _BV(BIT_ENABLE_RXD_LINK_PC);
 PORTD |= _BV(BIT_ENABLE_RXD_LINK_ZIGBEE);
}

/*
TxPacket() send data to RS485.
TxPacket() needs 3 parameter; ID of Dynamixel, Instruction byte, Length of

parameters.
TxPacket() return length of Return packet from Dynamixel.
*/
byte TxPacket(byte bID, byte bInstruction, byte bParameterLength)
{
 byte bCount,bCheckSum,bPacketLength;

 gbpTxBuffer[0] = 0xff;
 gbpTxBuffer[1] = 0xff;
 gbpTxBuffer[2] = bID;
 gbpTxBuffer[3] = bParameterLength+2;

//Length(Paramter,Instruction,Checksum)

39

DYNAMIXEL AX-S1

 gbpTxBuffer[4] = bInstruction;
 for(bCount = 0; bCount < bParameterLength; bCount++)
 {
 gbpTxBuffer[bCount+5] = gbpParameter[bCount];
 }
 bCheckSum = 0;
 bPacketLength = bParameterLength+4+2;
 for(bCount = 2; bCount < bPacketLength-1; bCount++) //except

0xff,checksum
 {
 bCheckSum += gbpTxBuffer[bCount];
 }
 gbpTxBuffer[bCount] = ~bCheckSum; //Writing Checksum with Bit

Inversion

 RS485_TXD;
 for(bCount = 0; bCount < bPacketLength; bCount++)
 {
 sbi(UCSR0A,6);//SET_TXD0_FINISH;
 TxD80(gbpTxBuffer[bCount]);
 }
 while(!CHECK_TXD0_FINISH); //Wait until TXD Shift register empty
 RS485_RXD;
 return(bPacketLength);
}

/*
RxPacket() read data from buffer.
RxPacket() need a Parameter; Total length of Return Packet.
RxPacket() return Length of Return Packet.
*/

byte RxPacket(byte bRxPacketLength)
{
#define RX_TIMEOUT_COUNT2 3000L
#define RX_TIMEOUT_COUNT1 (RX_TIMEOUT_COUNT2*10L)
 unsigned long ulCounter;
 byte bCount, bLength, bChecksum;
 byte bTimeout;

 bTimeout = 0;
 for(bCount = 0; bCount < bRxPacketLength; bCount++)
 {
 ulCounter = 0;
 while(gbRxBufferReadPointer == gbRxBufferWritePointer)
 {
 if(ulCounter++ > RX_TIMEOUT_COUNT1)
 {
 bTimeout = 1;
 break;
 }
 }
 if(bTimeout) break;
 gbpRxBuffer[bCount] = gbpRxInterruptBuffer[gbRxBufferReadPointer++];
 }
 bLength = bCount;
 bChecksum = 0;

 if(gbpTxBuffer[2] != BROADCASTING_ID)
 {
 if(bTimeout && bRxPacketLength != 255)
 {
 TxDString("\r\n [Error:RxD Timeout]");
 CLEAR_BUFFER;
 }

 if(bLength > 3) //checking is available.
 {
 if(gbpRxBuffer[0] != 0xff || gbpRxBuffer[1] != 0xff)
 {
 TxDString("\r\n [Error:Wrong Header]");
 CLEAR_BUFFER;
 return 0;
 }
 if(gbpRxBuffer[2] != gbpTxBuffer[2])
 {
 TxDString("\r\n [Error:TxID != RxID]");
 CLEAR_BUFFER;
 return 0;
 }
 if(gbpRxBuffer[3] != bLength-4)
 {
 TxDString("\r\n [Error:Wrong Length]");
 CLEAR_BUFFER;
 return 0;
 }
 for(bCount = 2; bCount < bLength; bCount++) bChecksum +=

gbpRxBuffer[bCount];
 if(bChecksum != 0xff)
 {
 TxDString("\r\n [Error:Wrong CheckSum]");
 CLEAR_BUFFER;
 return 0;
 }
 }
 }
 return bLength;
}

/*
PrintBuffer() print data in Hex code.
PrintBuffer() needs two parameter; name of Pointer(gbpTxBuffer, gbpRxBuffer)
*/
void PrintBuffer(byte *bpPrintBuffer, byte bLength)
{
 byte bCount;
 for(bCount = 0; bCount < bLength; bCount++)
 {
 TxD8Hex(bpPrintBuffer[bCount]);
 TxD8(' ');
 }
 TxDString("(LEN:");TxD8Hex(bLength);TxD8(')');
}

/*
Print value of Baud Rate.
*/
void PrintBaudrate(void)
{
 TxDString("\r\n RS232:");TxD32Dec((16000000L/8L)/((long)UBRR1L+1L));

TxDString(" BPS,");
 TxDString(" RS485:");TxD32Dec((16000000L/8L)/((long)UBRR0L+1L));

TxDString(" BPS");
}

/*Hardware Dependent Item*/
#define TXD1_READY bit_is_set(UCSR1A,5)

//(UCSR1A_Bit5)
#define TXD1_DATA (UDR1)
#define RXD1_READY bit_is_set(UCSR1A,7)
#define RXD1_DATA (UDR1)

#define TXD0_READY bit_is_set(UCSR0A,5)
#define TXD0_DATA (UDR0)
#define RXD0_READY bit_is_set(UCSR0A,7)
#define RXD0_DATA (UDR0)

/*
SerialInitialize() set Serial Port to initial state.
Vide Mega128 Data sheet about Setting bit of register.
SerialInitialize() needs port, Baud rate, Interrupt value.

*/
void SerialInitialize(byte bPort, byte bBaudrate, byte bInterrupt)
{
 if(bPort == SERIAL_PORT0)
 {
 UBRR0H = 0; UBRR0L = bBaudrate;
 UCSR0A = 0x02; UCSR0B = 0x18;
 if(bInterrupt&RX_INTERRUPT) sbi(UCSR0B,7); // RxD interrupt enable
 UCSR0C = 0x06; UDR0 = 0xFF;
 sbi(UCSR0A,6);//SET_TXD0_FINISH; // Note. set 1, then 0 is read
 }
 else if(bPort == SERIAL_PORT1)
 {
 UBRR1H = 0; UBRR1L = bBaudrate;
 UCSR1A = 0x02; UCSR1B = 0x18;
 if(bInterrupt&RX_INTERRUPT) sbi(UCSR1B,7); // RxD interrupt enable
 UCSR1C = 0x06; UDR1 = 0xFF;
 sbi(UCSR1A,6);//SET_TXD1_FINISH; // Note. set 1, then 0 is read
 }
}

/*
TxD8Hex() print data seperatly.
ex> 0x1a -> '1' 'a'.
*/
void TxD8Hex(byte bSentData)
{
 byte bTmp;

 bTmp =((byte)(bSentData>>4)&0x0f) + (byte)'0';

40

DYNAMIXEL AX-S1

 bPrinted = 1; if(bTmp > '9') bTmp += 7;
 } TxD8(bTmp);
 else if(bPrinted) TxD8(((byte)lTmp)+'0'); bTmp =(byte)(bSentData & 0x0f) + (byte)'0';
 lLong -= ((long)lTmp)*lDigit; if(bTmp > '9') bTmp += 7;
 lDigit = lDigit/10; TxD8(bTmp);
 } }
 lTmp = (byte)(lLong/lDigit);
 /*if(lTmp)*/ TxD8(((byte)lTmp)+'0'); /*
} TxD80() send data to USART 0.
 */
/* void TxD80(byte bTxdData)
TxDString() prints data in ACSII code. {
*/ while(!TXD0_READY);
void TxDString(byte *bData) TXD0_DATA = bTxdData;
{ }
 while(*bData)
 { /*
 TxD8(*bData++); TXD81() send data to USART 1.
 } */
} void TxD81(byte bTxdData)
 {
/* while(!TXD1_READY);
RxD81() read data from UART1. TXD1_DATA = bTxdData;
RxD81() return Read data. }
*/
byte RxD81(void) /*
{ TXD32Dex() change data to decimal number system
 while(!RXD1_READY); */
 return(RXD1_DATA); void TxD32Dec(long lLong)
} {
 byte bCount, bPrinted;
/* long lTmp,lDigit;
SIGNAL() UART0 Rx Interrupt - write data to buffer bPrinted = 0;
*/ if(lLong < 0)
SIGNAL (SIG_UART0_RECV) {
{ lLong = -lLong;
 gbpRxInterruptBuffer[(gbRxBufferWritePointer++)] = RXD0_DATA; TxD8('-');
} }
 lDigit = 1000000000L;
 for(bCount = 0; bCount < 9; bCount++)
 {
 lTmp = (byte)(lLong/lDigit);

 if(lTmp)
 {
 TxD8(((byte)lTmp)+'0');

41

DYNAMIXEL AX-S1

Connector Company Name : Molex

 Pin Number: 3

 Model Number

 Molex Part Number Old Part Number

Male 22-03-5045 5267-03

 F 50emale -37-5043 5264-03

 Temperature range : -40°C to +105°C

 Contact Insertion Force-max : 14.7N (3.30 lb)

 Contact Retention Force-min : 14.7N (3.30 lb)

www.molex.com or www.molex.co.jp for more detail information

Female Connector

Male Connector

Pin No.1

42

http://www.molex.com/
http://www.molex.co.jp/

DYNAMIXEL AX-S1

Dimension

CM-5 Dedicated AX-12, AX-S1 control box. Able to control 30 AX-12 actuators, 10 AX-S1.

6 push buttons (5 for selection, 1 for reset)

Optional installable wireless devices available

Battery compartment (AA x 8) with recharging capability (when connected to an external

SMPS)

 CM-5

43

	Male Connector

