MicroCamp

ATmega8 Activity Kit
manual

www.inex.co.th
www.inexglobal.com

2 ® MicroCamp : ATmega8 Activity Kit Manual

Content

Chapter 1 MicroCamp Activity kit hardware.........coccvervimrnnrsensnsnnas 3
Chapter 2 Development software for MicroCamp Kit..........ccoeceiineenes 15
Chapter 3 C programming development for MicroCamp kit with

AVR Studio and WInAVR C-compiler.......c.occvmvamnemnansansansnsss 23
Chapter 4 Library and Function of C programmingccecvemversassassassans 33
Chapter 5 Operator of WIinAVR C-compiler......ccccuiciiimcnnnassnasnnnnns 43
Chapter 6 Library and Specific command in MicroCamp kit................. 53
Chapter 7 Building robot with MicroCamp Kit......ccoccvimierimmmsessasnnnns 63

Activity 1 Basic movement of MicroCamp robot................ 68

Activity 1-1 Forward and Backward movement
Activity 1-2 Circle-shape movement control
Activity 1-3 Square-shape movement control
Activity 2 Object detection with Collision....................... 71
Activity 2-1 Simple collision detection
Activity 2-2 Trapped in a cormer situation
Activity 3 Line tracking robot..............coovevviiiiiiiinnniiiinnns 75
Activity 3-1 Testing black and white area
Activity 3-2 Robot moves along the black line
Activity 3-3 Line crossing detection

MicroCamp libraries source program.....cccccevsesmsnsssnsssnssanssanssasssanssnnss 83

MicroCamp : ATmega8 Activity Kit Manual ® 3

Chapter 1

MicroCamp Activity kit

hardware

MicroCamp is a set of Microcontroller Activity kit for learning about Micro-
controller operation via Robotic activities with C language programming. You will learn
about simple operation of microcontroller and how to interface with external

components in real word applications.

This activity kit includes Microcontroller board (will call “MicroCamp board™),
Swtich module, Infrared Reflector module, DC motor gearboxes and many other

mechnical parts for building a programmable robot.

Figure 1-1 shows the layout of MicroCamp main controller board.

RESET switch

POWER indicator —— .

Battery Terminal (6Vdc max.)

POWER switch

_%p- ATmegas

={rpD-
In-System1 -
Programming E O
connector -~

=TI~

i
|
i
(ISP) :
— n
[eee 101Uuon :? gggz
SRl S
Input-Output [+« o[- - > o
connector i\ - - T~
PO=PCO0/ADCO I nin
P1=PC1/ADC1 [sias
P2=PC2/ADC2
P3=PC3/ADC3
P4=PC4/ADC4 .
Piezo speaker (PD4)
S/DATA
: LED1 indicator (PC5)
P— SW2 (PD3)—
GND +5V SW1 (PD2)—

LED2 indicator (PD1)

T3 microcontroller

Motor B indicator

Motor A indicator
Motor A output

Motor B output
s 38kHz Infrared ©° >

- Receiver module

connector S/DATA
Serial data communication port

O|GND
O] +5v
O|RESET
O|rRxD
O|TxD

=3
g

—

Figure 1-1 MicroCamp board layout

4 ® MicroCamp : ATmega8 Activity Kit Manual

1.1 Hardware of MicroCamp Activity kit

1.1.1 MicroCamp controller board

® The main microcontroller is the 8-bit AVR microcontroller from Atmel; ATmegas.
It has many features of modern microcontroller such as the 10-bit Analog to Digial
Converter module (ADC), Flash program memory 8KB with 10,000 times erase-write cycles,
Data EEPROM 512 bytes and RAM 512 bytes too.

® Main clock frequency 16MHz from Xtal.

® 5-channels Programmable 3-pin Input/Output port. User can programmable all
port pins for usages as a Digial Input port, Digital Output port and an Analog input port.
The 3-pins are Supply voltage (normally is +5V), Signal or Data and Ground respectively.

® Reserve a port for connecting 38kHz Infrared Receiver module. This port will
be assigned to share with Serial Receiving signal (RxD) to external serial data
communication device.

® Piezo speaker for sound beeps

® 2 Push-button switches

® RESET switch

® 2 LED indicators, active when logic is “High”

® 2-channels of DC motor drivers. They drive 4.5 to 6V 600mA DC motor with LED
indicators

® Supply voltage of +4.8 to +6V from 4 of AA size batteries. Contain in battery
holder at the back of controller board.

® On-board switching regulator circuit to maintain the +5V supply voltage when
motors function and consume more current.

1.1.2 PX-400 The serial portinterface In-System Programmer box

This programmer is used for programming the code into flash memory within the
AVR microcontroller. It can work a wide variety of AVR microcontrollers.

Its features are :

® Connection with computer serial port via RS-232. If the computer has
only USB port, a USB to Serial port converter can be used. The UCON-232S is highly
recommended for this purpose.

® Program the AVR microcontroller via ISP cable. Supports Read, Write,
Erase and Data protection functions.

MicroCamp : ATmega8 Activity Kit Manual ® 5

Figure 1-2 Shows PX-400 In-Systrem Programmer box for AVR microcontroller.

® Require +5V supply voltsge from target microcontroller board.

® Operate with AVR Prog software. This software is included in the AVR
Studio and can be found in the tools menu and works with the Avr-Ospll software as well.

Model Numbers of microcontroller supported in AVR Prog

AT90S1200, AT90S2313, AT90S2323, AT90S2343, AT90S4433 , AT90S8515, ATO0S8535,

ATmegal28, ATmegal6, ATmegal6l , ATmegal62 , ATmegal63, ATmegal64P ,
ATmegal65, ATmegal68 , ATmega32 , ATmegabd4 , ATmega8 , ATmega8515,
ATmega8535,

ATtiny12 , ATtiny13 , ATtiny15L , ATtiny2313, ATtiny26

Model Numbers of microcontroller supported in Avr-OSP |l

ATI90CAN128, AT90OCANI2, ATOOCANG4,
AT90PWM2, ATOOPWMS3,

AT90S1200, AT90S2313, AT9052323, AT90S2343, AT90S4414, AT90S4433, ATO0S4434,
AT90S8515, AT90S8515comp, AT90S8535, AT90S8535comp,

ATmegal0O3, ATmegal03comp, ATmegal28, ATmegal280, ATmegal28l,

ATmegal6, ATmegal6bl, ATmegal6lcomp, ATmegal62, ATmegal63, ATmegal6s,
ATmegal68, ATmegal69,

ATmega2560, ATmega2561,
ATmega32, ATmega323, ATmega325, ATmega3250, ATmega329, ATmega3290,
ATmega406, ATmega4s,

ATmegab4, ATmegab40, ATmegab44, ATmegab4s, ATmega6450, ATmegab49,
ATmega6490,

ATmega8, ATmega8515, ATmega8535, ATmegass,

ATtiny11, ATtiny12, ATtiny13, ATtiny15,

ATtiny22, ATtiny2313,ATtiny24, ATtiny25, ATtiny26, ATtiny261, ATtiny28,
ATtiny44, ATtiny45, ATtiny461,

ATtiny84, ATtiny85, ATtiny861

6 ® MicroCamp : ATmega8 Activity Kit Manual

+ +
SwW1 8 Y
POWER R1 D1
0.47R 1N4001
K1 +
DC input_ IC1
+4.8~6Vdc TL499A
— —
c1 R4 c3 c4
220/16V R2 1ok 1000/6.3V | 1000/6.3v LED1
150 5 7 OoN

+5V
+Vm

cs 7 20 ¢ 8 vCC VM
0.1/50V 0.1/50V
01/50V [yec AVee Y

3 ° °
o—L{pcs/RESET - - IC3 -
5 1500 L293D ik .
i RESET I 6 PB1/|15 L pAA 1lie +
MOSI 0.1/50V OC1A A AAAS o3
- -—- 1R520[; ~a | 0.1/50v K2
RESET = 1?5»2 = PD6 12 X aa 2|4 ~a MOTOR-B
SCK AAAA 17 VVVy
WW PB3/MOSI R21 6 fo2
MISO| R8 13 LR 7 2Y * L
150R PD7 MW 1B 3y 11 _ _
AMA—81 pRa/MISO o
12312 19 PB2/|16 AlASERA 91-e R31
MWW PB5/SCK OC1B M 0 :El .
150R +
+5V PBO 14 A 1015 c14
o R24 ~a |0:1/50v K3
o 11 o 15 » MOTOR-A
o A 23 PD5 AV, 28
PO [Of] WW PCO/ADCO ey ayl (ep3
Cam R11 GND * ?
S vy T 2 3
P1 [Of MW 24 PC1/ADC1 hd
oTe R12 SRy SR8 [
S 25 A
P2 |0 PC2/ADC2
O:—ﬂ 'va_;' C2/ADC PD2 4 AN O O
P33 o 26 1508 Sw2
I AAAA
3 8—‘—0 .va:. PC3/ADC3 ppy3 5 AV C)—l—o_“
6} 150R 27
P4 |of AW PC4/ADC4 9 [o1 -
o9 M PBO bl 16MHz
-
10 L
28 locs/aDcs PBY HH =
RIS RI6 1
ono [O}-o k150 2 —
+5v|O AW PDO/RxD R29 1031126V
RESET |0 R17 6 LR
RxD|O 150R 3 PD4 _WW_|
[0 ¢ AMA—={PD1/TxD
9
0-II_" 0.1/50V Rlls IC2 SP1
cio | Leos LED4 PIEZO
,_“_“0 1jsov | IND2 IND1 ATMegas
IRM - | #¥ 2 =
O AREF
-_ —_ I GND GND
= = 11
To.1/sov 8 22

Figure 1-3 MicroCamp controller board schematic

MicroCamp : ATmega8 Activity Kit Manual ® 7

1.2 MicroCamp controller board circuit
description

The heart of this controller board is ATmega8 microcontroller. It runs on a 16MHz
clock from crytal which is connected at PB6 and PB7 pin.

For PCO to PC4 port is defined as the new name to PO to P4. It is labeled on the
circuit board for easy reference. All ports can programmable to analog or digital input/
output. Analog signal from these port would pass through the Analog to Digital Converter
module within ATmegas8. The resolution conversion is at 10-bit.

PB3, PB4 and PB5 are In-System Programming port. They are connected to ISP
connector for connect with the external ISP programmer box.

PC6/RESET pin is connected with the RESET swtich for resetting to restart the
microcontroller operation from user.

PDO/RxD pin is the serial receiver pin. It is shared with IRM connector for 38kHz
Infrared Receiver Module and 5-pin of Serial data communication port.

PD1/TxD pin is the serial transmit pin. It is shared to drive the LED5 (IND2 label) and
TxD pin of 5-pin of Serial data communication port. For LED4 or IND1 is direct connected
to PC5 of ATmega8 microcontroller with current-limit resistor.

The MicroCamp board is equipped with 2 Push-button switches. They are
connected to PD2 and PD3 and connected 4.7kQ resistor pull-up for setting the logic
level to “High” in a normal operation and changing to logic “Low” or “0” when switch
is pressed.

PD4 pin is connected with a Piezo speaker via coupling capacitor 10uF.

The MicroCamp controller board includes the DC motor driver circuit. It has 2
outputs. The driver IC is L293D H-Bridge driver. One DC motor driver circuit requires 3
signal pins to control :

A and B input for applying the signal to select the spin direction of motor.

E control pin is used for enble and stop operation of driver circuit. In
addition, the user can control the motor speed with apply PWM signal to this pin. If the
width of PWM is wide, it means the high level of voltage sent to motor output.

At the output of L293D, bi-color LED is connected to indicate the voltage pole at
the output. Green color indicates forward. Red color indicates backward.

The Power suppy circuit of this board is switching type circuit. TL499A is set to step-
up +5V switching regulator for supply voltage to all microcontroller circuit except for the
motor driver. With this circuit, it helps microcontoller voltage supply to be more stabilized.
Although DC motors require more power during operation but the supply voltage of
microcontroller is still fixed at +5V.

8 ® MicroCamp : ATmega8 Activity Kit Manual

1.3 MicroCamp activity kit’'s cable assignment

The MicroCamp activity kit includes some signal cables for the interfacing
between the controller board, sensor module and the computer. They includes the ISP
cable for programming the microcontroller, PCB3AA-8 cables for interconnection to the
sensor module and a Serial port cable for interfacing with the computer.

1.3.1 ISP cable

Itis 10-wiresribbon cable. Both ends are attached to the female 10-pin IDC header.
It is used for interfacing between ISP programmer box and Microcontroller board at ISP
connector. This ISP cable’s assignment is compatible with Atmel’s programming tools
standard. The wire assignment can show with the diagram below.

MOSI +5V
N/A GND
RST GND
SCK GND
MISO GND

1.3.2 PCB3AA-8 cable

This is an INEX standard cable, 3-wires combined with 2mm. The PCB connector is
at each end. 8 inches (20cm.) in length. Used for connecting between microcontroller
board and all the sensor modules in MicroCamp kit. The wire assignment is shown in the
diagram below.

2mm. pitch 2mm. pitch
GND / / :|
+§V

1.3.3 CX-4 serial port cable

This is used to connect between the computer’s RS-232 serial port and the target
or external device such as a Microcontroller board, eg. The MicroCamp controller board.
The connector’s end uses a DB-9 female connector, and the other end uses a Modular
plug RJ-11 6P4C (6-pins form and 4-contacts) Its Length is 1.5 meters. In the kit, this cable is
used to connect between RS-232 serial port and PX-400 programmer box. The wire
assignment is shown in the diagram below.

DB-9 female connector
RJ11-6P4C modular plug

O—=(>
80_ @ // // —— @@
-e_ o @
O ot 7) ®
OO

conductor side

@Qrd @0 @HbpTR (G)GND

MicroCamp : ATmega8 Activity Kit Manual ® 9

1.4 ATmega8 microcontroller Overview

The ATmega8 is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cycle,
the ATmega8 achieves throughputs approaching 1 MIPS per MHz allowing the system
designer to optimize power consumption versus processing speed.

The ATmega8 which use in MicroCamp board is 28-pin DIP package. The pin
assignment shows in the figure 1-4.

1.4.1 ATmegas8 features
e It is a low-power 8-bit microcontroller based on the AVR RISC architecture.

e 8K bytes of In-System Programmable Flash with Read-While-Write capabilities 10,000
times erase cycle, 512 bytes of EEPROMwith 100,000 times erase cycle, 1K byte of SRAM
and 32 general purpose working registers.

e 23 General I/0 lines. manage to 3 groups

1. Port B (PBO to PB7) : Use 2 pin (PB6 and PB7) for connect crystal for clock
generator circuit. PB2 to PB5 normally are reserved for In-system porogramming port.
Thus PBO and PB1 free for general purpose application.

2. Port C (PCOto PCE6 : 7 pins) PCO to PC5 are analog input pins. PC6 normally
use for RESET pin.

3. Port D (PDO to PD7 : 8 pins) This port can support general purpose
application.

PC6/RESET [0 ~ 28] PC5/ADC5/SCL
PDO/RxD [2] 27] PC4/ADC4/SDA
PD1/TxD [3] 26] PC3/ADC3
PD2/INTO [4] ., [25] PC2/ADC2
PD3/INTL [5| B [Pc1/ADCL
PD4/TO/XCK [6] ; 23] PCO/ADCO
vee[7] S [226ND
GND [8] GE) 21] AREF
PB6/TOSCI/XTALL [9] = [20] Avee
PB7/TOSC2/XTAL2 [10] < 19] PB5/SCK
PD5/T1 [1 18] PB4/MISO
PD6/AINO [12] 17] PB3/MOS1/0C2
PD7/AIN1 [13] 16] PB2/SS/OC1B
PBO/ICP1 [14 15] PB1/OC1A

Figurel-4 ATmega8 microcontroller pin assignment

10 ® MicroCamp : ATmega8 Activity Kit Manual

e Two 8-bit Timer/Counters with Separate Prescaler, one Compare Mode

e 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
e Real Time Counter with Separate Oscillator

e Three PWM Channels

e 6-channel ADC, 10-bit Accuracy

e Byte-oriented Two-wire Serial Interface

e Programmable Serial USART

e Master/Slave SPI Serial Interface

e Programmable Watchdog Timer with Separate On-chip Oscillator

e On-chip Analog Comparator

e Power-on Reset and Programmable Brown-out Detection

e Internal Calibrated RC Oscillator

e External and Internal Interrupt Sources

¢ 5 Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and Standby
e Operating Voltage 4.5 - 5.5V

e Speed Grades 0 to 16 MHz

1.4.2 Block diagram of ATmega8

Figure 1-5 shows the ATmega8 microcontroller block diagram. The AVR core
combines a risc instruction set with 32 general purpose working registers. The ATmega8
provides the following features: 8K bytes of In-System Programmable Flash with Read-
While-Write capabillities, 512 bytes of EEPROM, 1K byte of SRAM, 23 general purpose /O
lines, 32 general purpose working registers, three flexible Timer/Counters with compare
modes, internal and external interrupts, a serial programmable USART, a byte oriented
Two-wire Serial Interface, a 6-channel ADC with 10-bit accuracy, a programmable
Watchdog Timer with Internal Oscillator, an SPI serial port, and five software selectable
power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/
Counters, SPI port, and interrupt system to continue functioning.

1.4.3 ATmegas8 pin function

Table 1-1 is summary information about ATmega8 pin function.

MicroCamp : ATmega8 Activity Kit Manual ® 11

A A A p4 External
RESET———————— | I 1 oscillator circuit
Port C (PC6-PC0) Port B (PB7-PB0) -
AAA AL A A A A A
Vcc
o P % % % e
YYYYYYY YYYYVYYVYYY
—,__ | Port C drivers/buffers | | Port B drivers/buffers |
| Port C digital interface | | Port B digital interface |
< — D
) &4
Multiplex
and)
2-Wires
Analog to - ADC <>
> Digital > nterface interface
AGND Converter
AREF (ADC)
r >
: - ul Timer/ | - : o
. * — § <> onter [- Oscillator
rogram ac >
™ counter [¥] Pointer :
Y | Y Internal
Flash P RAM Oscillat
o Flast A nggg;am 1] pata emory <«—p scillator
A +
- Watchdog :
Instructs - Oscillator
nrseéli.lstenr)n > Generreaglispttérrpose Timer
! X v
Instruction] Y MCU control and Timing &
decoder e l A l
Control signal ALU <—>| Interrupt unit |
AVR CPU —>
| |«—»| EEPROM Data Memory |
—| Programming logic |<—| SPI |<—> <—>| USART |
Comparator “— >
:l: > interface

< = 7 D

| Port D digital interface |

U

| Port D drivers/buffers |
A A A A A A A

YYYYYYYY
Port D (PD7-PDO)

Figure 1-5 ATmega8 Block Diagram

12 ® MicroCamp : ATmega8 Activity Kit Manual

Name | Pin number Type Description

Vee 7 Input - Supply voltage +4.5 to +5.5V

GND 8,22 Input - Ground

AVce 20 Input - Supply voltage + 5V for ADC module of ATmega8

AREF 21 Input - Reference voltage input for ADC module of ATmega8
Name | Pin number Type Description

PBO 14 Input/Output |- PBO Digital port

ICP1 Input - Input Capture 1

PB1 15 Input/Output |- PB1 Digital port

OC1A Output - Output Compare/PWM 1A

PB2 16 Input/Output |- PB2 Digital port

0OC1B Output - Output Compare/PWM 1B

SS Input - Slave input for SPI and In-System Programming (ISP)

PB3 17 Input/Output |- PB3 Digital port

0C2 Output - Output Compare/PWM 2

MOSI Input/Output |- Data input in Slave mode of SPI bus and ISP

- Data output in Master mode of SPI busand ISP

PB4 18 Input/Output |- PB4 Digital port
MISO Input/Output |- Data input in Master mode of SPI bus and ISP

- Data output in Slave mode of SPI bus and ISP

PB5 19 Input/Output |- PB5 Digital port
SCK Input/Output |- Clcok input in Slave mode of SPI bus and ISP
- Clcok output in Master mode of SPI bus and ISP

PB6 9 Input/Output |- PB6 Digital port when config CPU operate with internal clock
XTAL1 Input - External clock input, Connect with Crystal or Ceramic Resonator
TOSC1 Input - Not use when config CPU operate iwth internal clock

PB7 10 Input/Output |- PB7 Digital port when config CPU operate with internal clock
XTAL2 Input - Connect with Crystal or Ceramic Resonator

TOSC2 Output - Clock output when config CPU operate with internal clock

Table 1-1 Pin function summary of ATmega8 microcontroller (continue)

MicroCamp : ATmega8 Activity Kit Manual ® 13

Name | Pin number Type Description
PCO 23 Input/Output |- PCO port
ADCO Input - Analog input channel 0
PC1 24 Input/Output |- PC1 port
ADC1 Input - Analog input channel 1
PC2 25 Input/Output |- PC2 port
ADC2 Input - Analog input channel 2
PC3 26 Input/Output |- PC3 port
ADC3 Input - Analog input channel 3
PC4 27 Input/Output |- PC4 port
ADC4 Input - Analog input channel 4
SDA Input/Output |- Serial data in 2-Wire bus interface
PC5 28 Input/Output |- PC5 port
ADC5 Input - Analog input channel 5
SCL Output - Serial Clcok output in 2-Wire bus interface
PC6 1 Input/Output |- PC6 port
RESET Input - External reset

Name | Pin number Type Description
PDO 2 Input/Output |- PDO Digital port
RxD Input -USART receiving input
PD1 3 Input/Output |- PD1 Digital port
TxD Output - USART transmit output
PD2 4 Input/Output |- PD2 Digital port
INTO Input - External interrupt channel 0
PD3 5 Input/Output |- PD3 Digital port
INT1 Input - External interrupt channel 1
PD4 6 Input/Output |- PD4 Digital port
XCK Input/Output |- USART external clock
T0 Input - Timer 0 External input
PD5 11 Input/Output |- PD5 Digital port
T1 Input - Timer 1 External input
PD6 12 Input/Output |- PD6 Digital port
AINO Input - Analog comparator input channel 2
PD7 13 Input/Output |- PD7 Digital port
AIN1 Input - Analog comparator input channel 1

Table 1-1 Pin function summary of ATmega8 microcontroller (finish)

i
INNOVATIVE EXPERMENT

14 @ MicroCamp : ATmega8 Activity Kit Manual

MicroCamp : ATmega8 Activity Kit Manual ® 15

Chapter 2

Development software for
MicroCamp Activity kit

Programming development in MicriCamp Activity kit is C language. The software
tools that are installed for programming are the following :

1. AVR Studio : This software tool is developed by Atmel Corporation. AVR Studio
is a Development Tool for the AVR microcontrollers. AVR Studio enables the user to fully
control execution of programs on the AVR In-Circuit Emulator or on the built-in AVR
Instruction Set Simulator. AVR Studio supports source level execution of Assembly
programs assembled with the Atmel Corporation’s AVR Assembler and C programs
compiled with WinAVR open-source C Compiler. AVR Studio runs under Microsoft
Windows95 and Microsoft Windows NT. Now Windows XP SP2 is recommended. Free
download this software at www.atmel.com.

2. WinAVR : WInAVR is a set of tools for the C compiler, these tools include avrgcc
(the command line compiler), avr-ibc (the compiler library that is essential for avrgcc),
avr-as (the assembler), avrdude (the programming interface), avarice (JTAG ICE
interface), avr-gdb (the de-bugger), programmers notepad (editor) and a few others.
These tools are all compiled for Microsoft Windows and put together with a nice installer
program. Free download of the updated version is located at : http://sourceforge.net/
projects/winavr/.

For the MicroCamp Activity kit, C programming will be with WinAVR V20050214.
User will need to install AVR Studio first and WIinAVR after which. AVR Studio’s mechanism
integrates automatically with WINAVR. With this feature, it assist the user in the
development of C language and programming on AVR Studio which is much easier
and more powerful compared to WinAVR. The compiled file is a HEX file in which case,
the user has to download it into the program memory of the AVR microcontroller Board.

3. Library : These are the support files which allows the user to develop their C
language program more comfortably. An example is the Port control library for controlling
both Digital and Analog Input/Output, Motor control instructions, etc.

4. Programmer software : This software is used to download the compiled .HEX file
to the AVR Microcontroller. Included in this kit is the AVRProg. It is Atmel’s software and
an add-in feature in AVR Studio. AVR Prog software works with the PX-400 Serial port In-
system programmer box. The PX-400 programmer is bundled in the MicroCamp Activity
Kit.

16 ® MicroCamp : ATmega8 Activity Kit Manual

2.1 Installation AVR Studio

Installation of AVR Studio in Windows XP:

2.1.1 Insert the MicroCamp CD-ROM and look for this file in the AVR Studio
directory; aStudio4b460.exe. Double-click this file.

& software El@l@
[

File Edit ‘iew Favorites Tools Help

eﬂack - \‘./] ‘? I,:jSeard| ll Folders v

Address |[2) E:\8VR_project|Example_avr_ipstisaftware vl Go
Mame - Size | Type Date Modified
File and Fnlder Tasks 2 oo 16,516 KB Application 17/11}2548 11145
&WlnnUR-ZIISUZH-lmta\I.exe 13,721 ¥B Application 11122546 16:29

M Rename this file
[y Muve this file
Y copy this file

AW OkEch Heic File bo bhae ek

2.1.2 Enter Installation Wizard. Click on the Next button to continue.

AVHStudiod - Inctallshield Wizard

Welcome Lo the InstallShiehd Wizaid (o AYRStudiod

cind o your computer T contimus, cick Nest

sl | [cpot N, [Hiz) | P |

2.1.3 In the license agreement window, Select the box : | accept the terms of the
license agreement and Click on the Next button.

AVRtStudio4 - InstaliShield Wizard

Apreement

wieicome to AV Studio from Atmel Corporation.

4V Studio i+ 2 Development Tool for the AR family of microcontioliers. The AVR Studo i
e of chage and may ba isely copred and dictnbuted n iz ongnal form.

VR St el e o sl 1 e AVR Dt
Emulstor of on the inchuded Set Simuslor 1o supports source level
cxccubion of Assembly and L/L 11 programs assembled with the Atmel Lorparahon's ncluded
AN Assembler or tools from Jed parly vendors.

| AVR Studio nang under Microsoft Windows 35, Windows 98, Windows NT, Microsoit
Windows 2000 and Windovs HP

AV Sturdin is confinously develnning In orret in ged latest upgares of AVR Siurdio. please
vzt out wab site

wovews.ahinel. oo

and check out the AVH pags.

<Bock || o> | Frem—

Install i

MicroCamp : ATmega8 Activity Kit Manual ® 17

2.1.4 Choose Destination Location wondows will appear. You can change the
path by clicking on the Change button and setting the new path. After this, click on the
Next button.

AVRStudiod - InstaliShield Wizard

e Destnation Locabio

It el cBock [fhen> [| Cencel

2.1.5 The Driver USB Upgrade window will now appear. Click on the Next button
to pass this step.

2.1.6 In the begin installation window, click on the Install button to start installation.

AYRStudiod - InstallShield Wizard

Ready to Install the Program
The w

Tistallchid N cmack N inmaii f Cancel

2.1.7 After installation is complete, click on the Finish button to end the installation
of AVR Studio.

18 ® MicroCamp : ATmega8 Activity Kit Manual

2.1.8 To launch the AVR Studio program. Click on Start = Programs = Atmel AVR
Tools 2 AVR Studio 4. The main window of the AVR Studio program will appear.

AVR: Studio
- File Project Buld View Tools Debug Help

NHdd i BRE AR B4 FRE=raE N s BPFOEI L BEEESER

£ Trace Disabled S R BT
|1/ View x|
Marme | Walle | Eits

Fl1fo view | @ 1o |
=

|Message
Loaded plugin STES00

<
'}?Build (i] Message | S{Find in Files | @ Breakpaints and Tracepaints
[] CAP NUM SCRL

MicroCamp : ATmega8 Activity Kit Manual ® 19

2.2 Instalaltion of WinAVR

Please note that installation of WinAVR is done after the installation of AVR Studio.
Please ensure this is being done before proceeding.

Installation of WIinAVR in Windows XP :

2.2.1 Insert the MicroCamp CD-ROM, and find the installation file of WinAVR,;
WinAVR-20050214-install.exe. Double-click this file.

® softyare E)
Pl B4 Vew Favorkes Iodks Heb =
Yok - £ - Seah || Foiders [T21)-
€ ? AP ii
Adcress |2 E:\AVR_project|Example_avr_jpstisoftware v B
Name: S Type Date Modified
File and Folder Tasks 21 N BV astdiodbdbn.exe 46,51A KR Application 17)11]7548 11:45

s WINAYR-ZUUSUZ 1 4-nstal exe

14,/Z1 Kb Apphcation 11212548 16329

Date Created: 23/2/2549 11:106

See: 13.3 My

biksh this file to the web

() E-mail this fie

2.2.2 Installation language dialog box will appear for selection the language of
this installation. Sleect your preferred language from the sliding bar. After that click on
the OK button.

Installer Language
@ Please select a language.
English |
[Ok] [Cancel I

2.2.3 The Welcome installation software window appears and show the instalaltion
information. Click on the Next button.

{3 WinAVR 20050214 Setup e C

YWelcome to the WinAVR 20050214
Setup Wizard

This wizard will quide vou through the installation of ‘WinaYR
20050214,

It is recammended that you close all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer,

Click Mext to continue,

Mext >] I Cancel

20 ® MicroCamp : ATmega8 Activity Kit Manual

2.2.4 In the License agreement window, Click on the | agree button.

£ WinAVR 20050214 Setup -

License Agreement
Please review the license kerms before installing WindVR 20050214, @

Press Page Down ko see the rest of the agreement.

WinaYR Licensing Information |

SMU Binutils is distributed under the GMU GPL License,

GNU Compiler Collection (GCC) is distributed under the GMU GPL License,

avt-libc is distributed under a B0 License,

avrdude is distributed under the GHU GPL License,

avrdude-gui is distributed under the GNU GPL License,

uisp is distributed under the GHNU GPL License,

GhU Debugger (GDE) is distributed under the GMU GPL License,

Insight is distributed under the GMU GPL License w

If wou accept the terms of the agreement, click I Agree to continue, You must accept the
agreement to install WinaVR 20050214,

= Back " 1 Agree] l Cancel

2.2.5 Choose Install Location window appears. User can change the path and
the folder for installation of WinAVR by clicking at the Browse button and selecting the
respective folder. The proposed folder is C:\WIinAVR. After selection, click on the Next
button to continue to the next step.

@ WinAVR 20050214 Setup (ol
Choose Install Location
Choose the Folder in which to instal WinaYR 20050214, @

Setup will install WinAYR 20050214 in the Following Folder, To install in a different Folder, click
Browse and select another Folder. Click Mext to continue,

Destination Folder

Space required; 71 .6MB
Space available: 12.1GE

< Back “ Mexk = l l Cancel

MicroCamp : ATmega8 Activity Kit Manual ® 21

2.2.6 In the Choose Components window. select the components which you
want to install or follow according to the below diagram. Click on the Install button to

begin installation.

b WinAVR 20050214 Setup

=

Choose Components

Choose which Features of WinAVR 20050214 you want to install,

@

Check the components you want ko inskall and uncheck the components vou don't want to

install, Click Install to start the installation.

Select components ko instal: |]

&dd Directories ko PATH [Fecommendead)

[] Add shartcuts ko Deskkop
Install Programmers Mokepad

Space required: 71,6MB

< Back ”

Install J l Cancel

2.2.7 The installation process starts and reports the status back on the screen. The
User needs to wait until the installation is complete. Click on the Finish button to end

once its done.

2.3 Copying Library

You will need to copy the library file (.H file) from the MicroCamp_include folder
in the Cd-ROM. It is better to copy these files to a folder where you save your

programming codes.

During the program development of MicroCamp with AVR Studio and WIinAVR,
you will need to define or set the path of all the tools to integrate with the Micro
Camp_include folder. Ensure that the path of the MicroCamp_include folder is correct.
This is very important as if the path details are not clear or missing, the whole compilation

process will have errors.

INNOVATIVE EXPERIMENT

22 ® MicroCamp : ATmega8 Activity Kit Manual

MicroCamp : ATmega8 Activity Kit Manual ® 23

Chapter 3

C programming development
for MicroCamp kit with
AVR Studio and WInAVR compiler

3.1 The heart is the C compiler

In actual fact, writing of the C program for the microcontroller is not the actual
code that is sent to the microcontroller’s program memory. The real data is in the machine
code which is being compiled from the written C code and compiled with the C
Compiler software.

The steps in C programming development are as follows:
(1) Write the C programs with the text editor / Project IDE that is provided.
(2) Compile the C code into assembly Code for the microcontroller

(3) The Assembly Code will be converted into Machine Code into HEX file
format.

(4) Download this code into the program memory of the microcontroller
(5) Run the microcontroller. Go back to step 1 if you have errors.

Steps (2) and (3) will not be shown as the C Compiler will do all of these in its
background.

After installing AVR Studio and WINAVR software, the library files are required to
be copied in order to support the MicroCamp kit. The MicroCamp Library files are
contained in the MicroCamp_include folder in the CDROM that is included in this kit.

In the C programming development platform in AVR Studio, developers need to
compile it into project file format. After the codes are being compiled into HEX file using
the same name as the project filename, the file is needs to be downloaded into the
ATMEGAS8 Microcontroller.

For example :
Name the project file to test_ segment. After compiled, the result file is
test_segment.hex

24 ® MicroCamp : ATmega8 Activity Kit Manual

3.2 The AVR Studio V4.0 windows details

The figure below shows the main components in the main window of the AVR
Studio software.

File and Libraries that link with

the current project

wyR Studio - [pressure sensorey,. | CUITENt file is under development
File Project Buld Edt Wiew Tools Depom o e
=3 & T 04 4 > gul
Bz OE B X
AYR GCC X #include <ipst.h> j
= @pressure_sensor (default) 7 float F_ab={char analog_channel)
=124 Source Files i . i) 10.55);
" El Main C program file of this project
Header Files
=14 External Dependendies 3
analog.h ‘{Ihlle(l)
@ctype‘h lodi "FP(kPa): %f " F_ab=i{l));
[E) in_out.h slesp(100):
@ interrupt.h -
@ interrupt. b l}
@ inttypes.h
B
@ portpins.h
@ segment.h
[E serial.h
| @ sFr_d:alfs.h v |LLs L'J
@AVRGCC @IIO\HEW OInFo pressureisensor.c 4 b
Build x
Program: 7578 bytes [46.3% Full) H
Ciens b e beatiesns Build window : shows all status of operations which
_— I — includes the compiled result, error in compilation, HEX
frdata + -hss o+ noinit] file size and any other warning messages.
Build succeeded with 6 Warnings... L
4 ¥
32 6uild | @ Message | SRFind in Files @ Breakpoints and Tracepoints
® ni4 ot UM

3.2.1 File menu

Includes the command as follows :

New File Create empty text file

Open File Open a file in text editor or an object file for debugging
Close Close the active text file

Save Save current text file

Save As... Save current text file under given name

Save All Save all files and project settings

Print Print active text file

Print Preview
Print Setup
Exit

Preview active text file
Setup printer

Exit AVR Studio, project are saved when exiting.

3.3.2 Project menu

MicroCamp : ATmega8 Activity Kit Manual ® 25

Includes the command as follows :

Project Wizard

New Project

Open Project
Save Project
Close Project

Recent Projects

Open the project wizard.

You must close the current project first.

Open the new project dialog.

You must close the current project first.

Open a new project, either an APS project file or an object file.
Save the current project with all settings

Close the current project

Show a list of recent project, select one to open

Configuration Options This option is only available when the projectis a code writing

3.2.3 Build menu

project. E.g. an assembler or AVR GCC project. This com-
mand open the configuration dialog for the current project.

Includes the command as follows :

Build

Rebuild All
Build and run
Compile
Clean

Export Makefile

3.2.4 Edit menu

Build the current project

Rebuild all the modules in the project

Build, and if error free , start debugging session
Compile the current source file

Clean the current project

Save the current settings in a new make file

Includes the command as follows :

Undo

Redo

Cut

Copy

Paste

Toggle Bookmark
Remove Bookmarks
Find

Find in Files

Next Error

Show whitespace
Font and color

Undo last editor action

Redo any undo action

Cut and copy selected text from editor

Copy selected text from editor

Paste any text from clipboard to the editor

Toggle bookmark on/off at the selected line in the editor
Remove all bookmarks

Open a find dialog to search through the current source file.
Open a find in files dialog to search through all project files.
Locate and jump to the next build error if any

Toggle on/off whitespace markings

Open a font dialog to view/edit font settings in the source
editor

26 ® MicroCamp : ATmega8 Activity Kit Manual

3.2.5 View menu

This menu includes the command as follows :

Toolbars Sub menu toggles toolbars on/off, access to customize-dialog.
Described here

Status Bar Toggle status bar on/of (status bar is the line in the bottom of the
screen)

Disassembler Toggle on/off the disassembly window

Watch Toggle on/off the watch view
Memory Toggle on/off the memory view
Memory 2 Toggle on/off the memory view 2
Memory 3 Toggle on/off the memory view 3
Register Toggle on/off the register view

3.2.6 Tools menu

This is the hardware interfacing command menu. AVR Studio can interface many
hardware for development. For the MicroCamp kit, developers must select the AVRprog.
This is the operating software for the PX-400 Serial Port In-System Programmer box.

Developers must connect the PX-400 box to their COM port before open the
AVRprog software.

3.2.7 Debug menu

This menu have many commands that relates to the program simulation and
debugging. The MicroCamp kit does not require much usage of this feature.

3.3 Building C project file in AVR Studio

3.3.1 Open the AVR Studio. If there is any project running, developers can close
by select the menu Project - Close Project

3.3.2 To create the new project. Select the command at menu Project > New
Project.

AVR Studio
Fie Mw\s Debug Help

0o Project Wizard PE o o BRE A4 AARES
e et oo 6 L+ momm

Open Project

x

& save Projt bhc |

Rerent Projerts b

MicroCamp : ATmega8 Activity Kit Manual ® 27

3.3.3 The properties project window will appear. Set the parameter as follows :

3.3.3.1 Click on this to select AVR GCC item within Project type: for select
type of project file to program in C.

3.3.3.2 Set the project name as Switch_LED (an example name). This will
cause the initial file section to be created. This project has a main C program file called,
Switch_LED.c.

3.3.3.3 Select the project’s path in Location: Example is G:\Work2006\AVR-
ROBOT\Code. After this, click on the Finish button.

1~ Create new project —

Froject type: Froject name:
& Atmel AYR Assembler |Switch_LED

‘3 AVR GLC
¥ Create iritial fle 17 Ciecie iolder
Initial file:
|Switch_LED e

Location:

|G:\Work?DDB\AVH-HDBDT\Eode

Werd12.452 ¥ Show dialog at startup

Back i Mest > ‘E! Finizh J Lancel ‘ Help l

3.3.4 The Switch_LED project environment will be created as shown in the diagram
below.

AYR Studio - Switch_LED.¢ BEE o ﬁ WaarkZz00a
Mle Project Duld Cdit View Tools Debug ‘Window el
DEH@S L LBS s =« FH BB XE M.) avR
AVR GCC X
S8 vor i paan = [AVR-ROBOT

¥ 3 sourrce Flec
{3 tHeader Mles
‘2 External Dependencies
£ ueher Files

EJ capture

= OEn
[T Fow
I3 iinclude

I labot
[lab0z

) Test Board
I Test_Board
I test_ib
B B[] Bsmesgme 0 1 I3 test_libz
- x I3 test_lib3
T3 kest_relay
[testSw
y B t,clt M ’ B EyEEE

28 ® MicroCamp : ATmega8 Activity Kit Manual

The folder Switch_LED will be created in G:\Work2006\AVR-ROBOT\Code.
In the same folder the file Switch_LED.aps and main C program file Switch_LED.c will be
created.

3.3.5 Next step is to determine the microcontroller information and path of all the
library file which is being used in this project.

3.3.5.1 Select the command at Project > Configuration Options

AVR Studio - Switch_|ED.c

Eile | Project | Buld Edit iew Tools Debug ‘window Help
O Praject Wizard 2 Gty i P fo. AR Prog...

AR GE Mew Project
= f@ Cpen Project
+ Save Project

Close Project

Recent Projects L4

B Switch_LED.c

. Configuration Options

After that the window Switch LED Project Options will appear for
setting the properties. See the left of this window. Developers will found 5 icons as :

® General
® Include Directories
® Libraries
® Memory Settings
® Custom Options
3.3.5.2 At General icon, determine all data follows
® Device : atmega8
® Frequency: 16000000 Hz

Switch_LED Project Options D_?|
’h Active Configuration |defaull j E dit Configurations
R

L%
e I~ Use Exteinal Makefile |
General

Include
Directaries Dutput File Name: |Switch_LED.elf
E Dutput File Directary: [defaults J
Libraries Deniee atmegad - I¥ Unsigned Chars [-funsigned-char]
Frequency: 16000000 - Iv Unsigned Bitfields [-funsigned-bitfields]
’ pack-struct]
Optirmization: 00 =7 .
Mermory Settings I
=< v Create Hex File [Generate Map File [Generate List File
Cuskomn Optior..'_l

QK | Cancel Help

MicroCamp : ATmega8 Activity Kit Manual ® 29

3.3.5.3 Click on this icon and the Include Directories for determining the
path of library file. Find and select the library file and click on the Add button. For example
is C:\AVR_ROBOTNinclude. After determining the path, you will found the list for selection.

3.3.5.4 Select the icon Libraries to links to all the libraries with the main file.

Switch_LED Project Options rz|
Include Directories

)
3]
Pt C:havr_robothinchudeh

L B

General Fremonve

—
i Include Direckories

nclude
Directaries

o

Libraries

<
v

Memory Settings

o Move Up
= 4

=1 Mave Down

Cuskom Optior_'_l

i

QK | Cancel | Help |

3.3.5.5 At the boxs , Available Link Objects:, click to select the item libm.a
and click the Right Arrow button to copy the item libm.a which appears at the Link with
These Obijects window. Click the OK button to finish.

Switch_LED Project Options rz|
5;."'“\ . Library Directories
R Add .
A
General Remave
= [Csieis
Include 4
Directories
- Awailable Link Objects: Link with These Objects:
g libc.a Add Library -
libprintf_flt.a -
Libraries libprintf_min.a IR el
libzcant_flt.a
' libzcant_min.a
' ’ Add Object ...
Memory Settings
;f Move up
i
I Move down
Cuskam Optior_'_l

QK | Cancel Help

30 ® MicroCamp : ATmega8 Activity Kit Manual

3.3.6 Next, write the C code in the Switch_LED.c file. TThis file controls the
microcontroller to On and off the LED when the switch is pressed. The details & codes of
this file is shown in the Listing 3-1.

#include <in out.h>
#include <sleep.h>
void main ()

while (1)

{

if (in_d(2)==0)

{

toggle c(5) ;

if (in_d(3)==0)

{

toggle d(1);

sleep(200) ;
!
1

Listing 3-1 C code of Switch_LED.c

3.3.7 Compile the target file to Switch_LED.hex by selecting the command at the
menu Build - Build or press F7 button or click at [% button.

The status of this operation will be shown at the Build or Output window at
the bottom of the main window of the AVR Studio as shown in the diagram.

rn -rf Switch LED.o Switch LED.elf dep/* Switch LED.hex Switch LED.eep

Build succeeded with 0 Warnings...

avr-goc.exe -I"Cihvavr_robothiinclude™ -mmcu=atmegad -Wall -gdwarf-2 -DF_CPU=1600000007L -00 -funsigned-char -funsimmed-
oASwitch LED. cidi warning: return type of 'main' is not “int!

AVE-gCC. exe -mmcu=atmegad 3witch LED.o -lm -o Switch LED.elf

avr-objcopy -0 ihex -RE .eeprom Jwitch LED.elf Switch LED.hex

avr-objcopy -j .eeprom --set-zection-flags=.eeprom="alloc,load” --change-section-lma .eeprom=0 -0 ihex Jwitch LED.elf Sw

AVE Memory Usage:

Device: atmegad

Program: 10758 bytes (13.2% Full)
[.text + .data + .bootloader)

Data: 0 bytes (0.0% Full)
[.data + .bss + .noinit)

Build succeeded with 1 Warnings...

If any error occurs, such as an ilegal command or a link error, the Build
Output window will appear. Developers need to edit the program,pfix all errors and re-
comple the code until it is correct and the HEX file is being compiled properly.

After compilation, the file Switch_LED.hex will be made and stored in the
folder of that project file. For example : The result file Switch_LED.hex is stored at the
folder Switch_LED.hex is stored at G:\Work2006\AVRROBOT\Code\Switch_LED\
default.

MicroCamp : ATmega8 Activity Kit Manual ® 31

3.4 How to develop the previously project file

Developers can open the previously project file for editing or improvement. Enter
to menu Project > Open Project and select the path that store the target project file.
The project file is saved as .aps file

Example : If would like to open the Switch LED project file, select to Project 2>
Open Project and access to the path or folder which contains the Switch_LED.aps file.
Open this file for editing. Developers can save with the same name or different.

3.5 Downloading and Testing the program

The next step after compiling the project file is to download the HEX file to
MicroCamp controlelr board. In this example the result file is saved as Switch_LED.hex.
The step of downloading and testing are as follows :

3.5.1 Turn on the POWER switch. The green LED at ON labeled is on.

3.5.2 Connect the download cable (ISP cable) from the PX-400 programmer box
to the In-System Prog. (ISP) connector on MicroCamp controller board.

. UCON-232/UCON-232S USB to Serial port converter
If computer has not RS-232 serial

port, must use USB to Serial port Crp
converter.

P

@
< »
~—a

X2

Connect to USB port

PX-400 Connectto RS-232 serial port directly

In-System Programming for AVR

] =2

RS5-232
© READY

@ BusY

s B =

-nmj-

i ese$ gs

he $ i“' L&A Microcamp

100m u

b
g =i i 5" .% controller board

Figure 3-1 Connection diagram of PX-400 programmer box and MicroCamp
controller board for downloading the program

32 ® MicroCamp : ATmega8 Activity Kit Manual

3.5.3 Switch to AVR Studio program, select the command at menu Tool - AVR
Prog...

AYR Studio - Switch_|ED.c

File Project Build Edit View | Tools | Debug ‘Wwindow Help

D& Hg R*—‘

ANRGCC 4
=1 %E% Swikch_LED {deFault)
ITAGICE mkII Upgrade. .. B Switch LED.c
AYRISP mkIl Upgrade

[awreprog...
ICESO Upgrade. ..
ICESO Selftest.,.,

@ = . AVR Prog...

+-423] Source Files
£ Header Files
—1-423 External Dependencies

#include <in_out. h
#include <=leep h>»

in_ouk.b Cuskomize. .. wold main()
s h
oh Qptiens... while(l)
ioma.h Showe Kew Assignments . .
= ! if (in_d(2)=
librii. a Plug-in Manager ... i
[

3.5.4 The AVRprog window will not appear.

3.5.5 At the AVRprog window, click on the Browse button to find the path of
Switch_LED.hex file for selection the HEX file require to download.

AVYRprog |Z| |E| El

Hex file

G vefork 2006% . ASwitch_ LED hex

Browse... Exit...

Flazh
' veiy | Bead | Fornovice users, itisadviced NOT to enter
EEPROM the advance button of thiswindow as
Program | Veily | Fead | thelre are mapyadvanced cor.1ﬁguranon
which requires more experience for
Device adjusting and changing.
ATmegad f any setting are incorrect, ATMEGA8 wil
not be successfully programmed via ISP.

3.5.6 Click at the Program button in the Flash command. The Switch_LED.hex file
will now be downloaded into the ATmega8 microcontroller in the MicorCamp controller
board.

3.5.7 When the download is finished, the program will run automatic. Press the
button swtich SW1 and SW2 on MicroCamp controller board. Observe the LED operation.

The LED will turn on and off when the switch is pressed and blink if the
switch is released..

i
INNOVATIVE EXPERIMENT

MicroCamp : ATmega8 Activity Kit Manual ® 33

Chapter 4

Library and Function of
C programming

In C, a function is equivalent to a subroutine , or a procedure. A function pro-
vides a convenient way to encapsulate some computation, which can then be used
without worrying about its implementation. With properly designed functions, it is pos-
sible to ignore how a job is done; knowing what is done is sufficient. C makes the sue of
functions easy, convinient and efficient; you will often see a short function defined and
called only once, just because it clarifies some piece of code.

All C programs must have a ‘main’ function that contains the code which will be
run first when the program executes. Other sub C programs functions can be linked to
this main function. Therefore function capability is a vital component in C programming.

4.1 Function declaration

It has general format :

return type function name (parameterl, parameter2, ...)

{

command list 1;

command_list n;

thus ;
function name is the name of function

return_ type is the type of the data resulting from each function. Within
this function, the command return (value) is used for sending the result data. The
target variable that the return value will be applied on must be the same as each other
to avoid any variable mismatch. Any function without a return value, void parameter
at the return type must be.

parameter IS a part of data or variable that relate with function. Some
functions require many parameters, while some functions have none. If no parameters
are required, a void can be declared. Some function need many parameter but some
functrion not. In function that have not any parameter, can ignore or declare to void.

command list 1...command list n is a command within this function.
At the end of each command, a semi-colon symbol is required to close and separate
the commands.

34 ® MicroCamp : ATmega8 Activity Kit Manual

4.2 How to using the function

All functions in the C program that are declared can be called in the “main”
function and other functions as well. In the process of calling a function, developers
are required to specify the name of function and put the suitable parameters or data
which the function requires. The data which is passed to all parameters in each func-
tion is called an “Argument”

The calling function has this form :

function name (agumentl, agument2,...)

Thus;
function name is the specific name of the function which was declared.
agument is the data which is passed from the function parameters. If the
function has no parameters, no arguments are required.

Example 4-1

void tone (void)

{

sound (3000,100) ; // Sound generator function;

// generate 3kHz signal in 0.1 second
sleep(1000) ; // Delay 1 second
sound (3000,100) ; // Sound generator function;

// generate 3kHz signal in 0.1 second

from the code above, it is a declaration of a tone function. This function does not return
the result and has no parameters. This function operation is to generate the sound signal of
3kHz for 0.1 second and repeat itself again after 1 second.

Developers can use this function inside a main function as follows :
void main ()
................ // Any instruction

tone () ; // Call tone function
............... // Any instruction

Note : This function requires 2 libraries to be included in the C program ; sound.h and sleep.h

Example 4-2
void tone(unsigned int delay)

{

sound (3000,100) ; // Sound generator function;
sleep (delay) ; // Delay from parameter
sound (3000,100) ; // Sound generator function;

This example is different from the previous example at the Sleep function. The function
needs the parameter “delay” which is being declared in the tone for setting the time delay in
milliseconds.

MicroCamp : ATmega8 Activity Kit Manual ® 35

4.3 Library

A Library is a file which includes one or many functions that operates similarly.
Normally, the name of library file will according with the function for easy remembrance
and referencing.

To use libraries, programmers need to declare the prototype of the library at the
head of the main C program. The Correct path which contains the library file must be
set when creating the AVR Studio Project File.

4.3.1 How to make library

The library file is similar to a C program but without any Main program or main
functions. After write the codes , it must be saved as a .h file For example, create the
library file ; led1.h.

The steps for creating this file are as follows:
(1) Create the new file from File > New File to open the new editor window.

(2) Type in the code of the Blink function as follows :

void sleep (unsigned int ms)

unsigned int i,7;
for(i=0;i<ms;i++)
for(j=0;3<795;j++) ;

void blink (unsigned int cnt)

unsigned int cnt=0;
DDRC |= BV(5); // Set PC5 ==> Output
while(cnt < (cnt*2)) // Test Counter

{

PORTC “= BV(5); // Toggle PC5 bit
sleep(300) ; // Delay 0.3 Second
_cnt++;

(3) Save the file by selecting File > Save As... You need to save it as a .h
file. Now the library file led1.h is created.

36 ® MicroCamp : ATmega8 Activity Kit Manual

4.3.2 How to use library

After creating the library file, developers can call all functions inside the library
files by including them into the head of the C program.

#include <library filename>

or
#include “library filename”

Directive #include helps the C program to recognize all functions inside the
library file.

Example 4-6

(1) Create the new project in name ; test_lib

(2) Type the C code below in the test_lib.c window

#include <in out.hs // Standard Library
#include <ledl.h> // get blink function from here
void main ()

{
}

Description:

blink (10) ; // Blink LED 10 times

The test_lib program will use 2 library files. One is the standard input/output port
library of the ATmega8 microcontroller (in_out.h). Anothe one is the led1.h file that is
created on your own. Inside the led1 library has 2 functions ; blink and sleep(). blink
function determines the PC5 port to output for driving LED and sending logic “1” and "0”.
sleep () function determines the delay time for the LED operation. The blink function works
until it reaches the value that is being declared by the programmer.

(3) Set the path for led1.h library from Project > Configuration Options. Select the
icon Include Directories. After that, set the path for led1.h file.

(4) Build this project. The result file test_lib.hex will be created.
(5) Download the test_lib.hex into the microcontroller.
(6) Observe the operation of the program in the MicroCamp controller board.

LED at PC5 pin of ATmega8 will blink 10 times.

MicroCamp : ATmega8 Activity Kit Manual ® 37

4.4 Data type in C programming of WinAVR

WInAVR is a suite of executable, open source software development tools for
the ATMEL AVR series of RISC microprocessors hosted on the Windows platform. In-
cludes the GNU GCC compiler for C and C++. Thus, the Data types are compliant with
AVR-GCC and the summary of all Data types are :

Data type
char
unsigned char

int

+32,767.
unsigned int

long

unsigned long

long long

unsigned long long

float and double

arrays

pointers

structures

Size
8-bit Integer signed number. Range is -128 to +127.
8-bit Integer unsigned number. Range is 0 to +255.

16-bit Integer signed number. Range is -32,768 to

16-bit Integer unsigned number. Range is 0 to +65535

32-bit Integer signed number.
Rangeis-2,147,483,648 to +2,147,483,647

32-bit Integer unsigned number.
Range is 0 to +4294967295

64-bit Integer signed number.
Range is-9223372036854775808 to + 9223372036854775807

64-bit Integer unsigned number.
Range is 0 to +18446744073709551616

32-bit floating point

Data or Variable group are same data types and
store in address continue.

The index data to access the memory address.

Data or Variable group are different data types.

38 ® MicroCamp : ATmega8 Activity Kit Manual

4.5 Numerical system in C program of WinAVR

WInAVR compiler has 3 types of numerical system in C program.
1. Decimal number
2. Binary number The format is ObBBBBBBBB. Thus, B is 0 or 1
3. Hexadecimal number The format is OxXtHHHHHHHH. Thus, HisO to 9, Ato F

Example 4-7
The 8-bit binary number ; 0b10010010 is equal to 146 in decimal number.

The calculation 1 (1x27) + (0x26) + (0x25) + (1x2%) + (0x23) + (0x22) + (1x21) + (0x2°)
=146

Example 4-8
The 16-bit binary number ; 0b1111010011101101 is equal to 62701 in decimal number.

The calculation : (1x2%%) + (1x2%) + (1x213) + (1x2%?) + (0x2) + (1x21°) + (0x2°)
+ (0x28) + (1x27) + (1x2°) + (1x2%) + (0x2%) + (1x23%) + (1x2?)
+ (0x2') + (1x2°) = 62701,

Example 4-9

The hexadecimal number ; OxFF is equal to 255 in decimal number.

The calculation : (15x16?) + (15*16°) = 255, and OxFF - 0b11111111 in binary number.
Example 4-10

The hexadecimal number ; 0x31 is equal to 49 in decimal number.

The calculation : (3x16*) + (1x16°) =49 5and 0x31 - 0b00111111 in binary number.

4.6 Variable declaration

Variable declaration in C program of WinaVR is similar to ANSI-C programming.
The General form is

type variable name;
Thus;

type is The result data type
variable name is variable declared

such as :

int a;

long result;
float start;
int x,vy;

float p,q,r;

MicroCamp : ATmega8 Activity Kit Manual ® 39

// Declare a variable as int data type

// Declare result variable as long data type

// Declare start vairable as float data type

// Declare 2 variables; x and y. Data types are int

// Declare 3 variables; p, g and r. Data types are float.

In addition, programmers can declare the variables and set the initial value such as

int =100; // Declare x variable.
// Data type is an integer and the initial value is 100.
int x=15,y=78; // Declare x and y variable.
// Data type is an integer and the initial value are
// x=15 and y=78.
long p=47L,g=31L; // Declare p and g variable. Data type is long

// and initial value are p=47 and g=31.

4.7 Data type conversion

The general form of the conversion is

(type)variable

Thus; type is The result data type that is required

variable is the variable that is required to convert the data type

Example 4-11

int x=100; // Declare x variable as integer type and set its initial value to 100.

float y=43.67,z; // Declare v and z variable as float types and set v = 43.67.

z = y+(float)x ; // Set the value of z to be the addtion of v and x.
// x data is originally int.
// It needs to be converted to a float with (float)x command.
// The result of z = 143.67.

Example 4-12

int a=50; // Declare a variable as an integer type and set its initial value
// to 50.

long b=23L,c; // Declare b and c variable as long data type and set b to 23.

¢ = b*(long)a; // Set the value of c to be the multiplication between b and a.

//
//
//
//

a data is originally int. It's different from b and c.

It need s to be converted to a long data type with the
(long)a command

The result of ¢ = 1150

40 ® MicroCamp : ATmega8 Activity Kit Manual

4.8 Type of variable in WinAVR compiler

4.8.1 Array
4.8.1.1 One dimension Array

The declaration form of this one dimension array is :
type namel[size];
Thus ;
type is Data type of an Array variable
name is the Array variable name
size is the Numberof size of Array (optional)
Accessing the member of each array has the general form as follows :
name [index]

Thus ; index is the Index value for pointing to any member in array. This param-
eter can be a number or a variable, but these must be integer format.

Example 4-13

From declaration :

char arr([4];

It means arr is an array variable. It has 4 sub-variables such as :
arr[0] : Itis the first member but index value is ‘0’
arr[1] : It is the second member but index value is ‘1’
arr[2] : It is the third member but index value is ‘2’
arr [3] : It is the forth member but index value is ‘3’

arr[0], arr[1], arr([2] and arr[3] variable are char data type. All variable size are 1
byte. Thus declaration of the arr variable requires 4 bytes of space.

MicroCamp : ATmega8 Activity Kit Manual ® 41

Example 4-14

char dat[8] = {1,3,5,7,9,11,13,15} ;

This declares the array ; dat. It is 8 cells and the value for each cell is as follows :

dat[0] = 1;
dat[1] = 3;
dat[2] = 5;
dat[3] = 7;
dat[4] = 9;
dat [5] = 11;
dat[6] = 13;
dat[7] = 15;

For calling of individual cells after which,
char i , j ;
i=23;
j =datl[il; // j = dat[i] ==> j = dat[3] ==> = 7
/* The resultis j = 7 */
Example 4-15
char dat[4] = “ abcd”
This declares the array ; dat. It has 4 cells and the value for each cell is as follows :

dat[0] = ‘a’;
dat [1] = ‘b’;
dat[2] = ‘c¢’;

dat [3] = d’;
For calling of individual cells after which,

char i , j ;
i = 3;
j = datl[i]; // J = dat[i] ==> j = dat[3] ==> j = ‘d’

/*The result is j = ‘4’ */

The array variable can be declared as a global variable or a local variable. It can be used
in parameters when transferring of data into the function.

42 ® MicroCamp : ATmega8 Activity Kit Manual

4.8.1.2 The 2-Dimension Array

The declaration form of this two dimension array is :

type name [x] [y];
This command shows a 2 dimensional array type variable.

type is the Data type of Array variable

name is the Array variable name
x is the Number of row in the array
y is the Number of column in the array

For example :

int afl2][5];

It is declaring that “a” is a 2 dimensional array. It has integer types values

in 10 cells.

afo] (o], alo] [1], afo] [2], alo] [3],
afll] (o], a1l [1], alil (2], al1] (3],

For the setting of the cell values, this can be done as such:
int menu(3][4] ={{1,3,4,9} , {2,8,0,5}};

This would mean that :

menu[0] [0] = 1 menu [0] [1] = 3 menu[0] [2] = 4
menu[1] [0] = 2 menu (1] [1] = 8 menu[1l] [2] = O
menu[2] [0] = O menu[2] [1] = 0 menu[2] [2] = O

INNOVATIVE EXPERIMENT

alo] [4] ,
all] [4]

menu [0] [3] =9
menu[l] [3] =5

menu (2] [3] =0

MicroCamp : ATmega8 Activity Kit Manual ® 43

Chapter 5
Operators of WInNAVR compiler

The Operation in C program of Win AVR compiler can be divided into 3 groups,
which are the Arithmetic operator, Relation & logic operator and Bitwise operator.

5.1 Arithmetic operator

This group can be summarized into the following:
Operator Meaning
+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo

++ Increment

- - Decrement

+= Add with the Right-hand value

- = Subtract with the Right-hand value

*= Multiply by the Right-hand value
/= Divide by the Right-hand value
%= Modulo by the Right-hand value

5.1.1 Addition (+) and Subtraction (-)
Example 5-1

int a = 12;
a =a + 3;

The result is a = 15

Operation : Begin with a = 12. Add a with 3 and store the result to a. It means
12+3 = 15, store 15 to a.

44 ® MicroCamp : ATmega8 Activity Kit Manual

Example 5-2

int a = 12;
a =a - 3;

The resultisa =9

Operation : Begin with a = 12. Subtract a with 3 and store the result to a. It means
12-3 =9, store 9 to a.

5.1.2 / and % division

The different of both division is :
1. / is the division of numbers which will return an integer.

2. % is the division of numbers which will return with the remainder. Called
as Modulo.

Example 5-3

int x , vy , z;
x = 10;
y = x/3;
Z = X%3;

The resultis y =9 and z = 1
Operation :
y = x/3; 2y = 10/3 2y = 3 (Returns an Integer)
z = x%3; 2z = 10%3 2> z = 1 (Returns only the remainder)
5.1.3 ++ and - - operation

Example 5-4

int y = 5;
Y++i

The resultisy = 6

Operation : Begin with y = 5. Next, y+1 = 6 and store to y. Thus, y++; command
gives the result similartoy = y + 1; command

Example 5-5

int y = 5;
Y- i
The result is y = 4

Operation : Begin with y = 5. Next, y-1 = 4 and store to y. Thus y - -; command
gives the result similartoy = y - 1; command

MicroCamp : ATmega8 Activity Kit Manual ® 45

5.1.4 +=and - = operation

The operation of both operations can be summarized as follows:

y +=a; gives the result similar to vy

I
LY
+
2

y -=a; gives the result similar to vy =

I
N

I
fv

Example 5-6

int x = 100;
X += 10;
The result is x = 110
5.1.5 *=, /= and %= operation

The operation of all operators can be summarized as follows:

y *=a; gives the result similarto vy = y * a;
y /=a; gives the result similar to vy = y/a;
y %=a; gives the result similar to vy = y%a;

Example 5-7

int x, vy, z;

X *= 4;
Y /= 4/
zZ %= 4;

The resultis x =480,y =30and z = 0

46 ® MicroCamp : ATmega8 Activity Kit Manual

5.2 Relation & logic operator

The results of these operators are “1” if the condition is true and “0” if the condi-
tion is false. These operators can be summarized as follows :

Operator Meaning
== Equal
I= Not equal
> More than
< Less than
>= More than or Equal
<= Less than or Equal
! NOT
&& AND
1 OR

Example 5-8
a =10, b =4, c = 0xA0

Operation Condition Result

a>b true. 1
a>c false 0
a>=c true 1 (because 0xA0 = 10)
al=>b true 1
al=c false 0

5.2.1!,&& and || operation

I (NOT) can be summarized as follows
Operation Result
! false true(l)
I true false(0)
In summary, the result of NOT is to reverse the value of the input.

&&(AND) can be summarized as follows

Operation Result

false && false false(0)
false && true false(0)
true && false false(0)
true && true true(l)

In summary, the result of AND will be false if one of condition or both are
false.

MicroCamp : ATmega8 Activity Kit Manual ® 47

| 1(OR) can be summarized as follows

Operation Result
false || false false(0)
false || true true(1)
true || false true(1)
true || true true(1)

In Summary, the result of OR will be true if one of the condition or both
are true.

Example 5-9

Determine a = 10, b = 4 and ¢ = 0xA0

Operation Condition Result
a>b true. 1
a>b true 1
a>c false 0
a>=c true 1 (because 0xA0 = 10)
al=»b true 1
al=c false 0
or
I(a>b) false 0
I(a>c) true 1
I(a>=c) false 0
Ilal!=Db) false 0
I(al=c¢c) true 1
or
Operation Result
I(a>b) && (a>=c) false(0)
(a!=>b) && (a>=c) true(1)
(a!=b)&& I(a!=b) false(0)
and

I(a>b) || (a>=c) true(1)
(al!=>b) || (a>=c) true(1)
(@a'=>b) || (a!=b) true(1)
I(a>=c) || I(a = b) false(0)

48 ® MicroCamp : ATmega8 Activity Kit Manual

5.3 Bitwise Operator

The operators can be summarized as follows

Operator Meaning
~ Invert bit
& Bit AND
| Bit OR
N Bit XOR
<< Shift Left
>> Shift Right
<<= Shift left and Store the result to variable
>>= Shift right and Store the result to variable
&= AND operation with Store the result to variable
I= OR operation with Store the result to variable
N= XOR operation with Store the result to variable

5.3.1 Bit logic Operation

~ operation can summary as follows

Operation Result
~0 1
~1 0

& operation can summary as follows

Operation Result
0&0 0
0&1 0
1&0 0
1&1 1

| operation can summary as follows

Operation Result
0oJ]o 0
01 1
1]0 1
1]1 1

~ operation can summary as follows

Operation Result
ono0 0
o™ 1
170 1
i17~1 0

MicroCamp : ATmega8 Activity Kit Manual ® 49

Example 5-10

Determine :
int x,y,resultl,result2,resultl3,result4;
x = 0x9C;
y = 0x46;
Find the result of :
(1) resultl = x&y;

(2) result2 = x|y;
(3) result3 = xy;
(4)

4) resultd = ~x;

Solution :

Firstly, convert all value to a binary number.
x = 0x9C - 0000000010011100 (because int data type is 16-bit wide)
y = 0x46 - 0000000001000110

(1) resultl = (0000000010011100) & (0000000001000110)

0000000010011100
AND
0000000001000110
0000000000000100 -> 0x0004 or 0x04

(2) result2 = (0000000010011100) | (0000000001000110)

0000000010011100
OR
0000000001000110
0000000011011110 - O0x00DE or OxDE

(3) result3 = (0000000010011100) ~ (0000000001000110)

0000000010011100
XOR
0000000001000110

0000000011011010 - 0x00DA or OxDA

(4) result4 = ~(0000000010011100) Invert all bit
1111111101100011 - OxFF63

50 ® MicroCamp : ATmega8 Activity Kit Manual

5.3.2 Shift bit operation

In the shifting bit operation, you must determine the number of shifting such as :
dat = dat<<4;

It means shifting to the left of the dat variable 4 times and storing the
result into the dat again.

Another example is

dat = dat>>1;

It means shifting to the right of the dat variable 1 bit and storing the result
into the dat again.

Example 5-11

int dat, x1, x2;
dat = 0x93;
Find the result of

(1) x1 = dat<<l;
(2) x2 = dat<<2;
Solution:

dat = 0x93 - 0000000010010011

dat 0000000010010011

X1 0000000100100110

X2 0000001001001100

(1) x1 is Shifting left 1 bit results in a dat vairable. Thus,

x1 = 0x0126 or 294 in decimal number.
(2) x2 is Shifting left 2 bits results in a dat vairable. Thus,

x2 = 0x024C or 588 in decimal number.
Example 5-12

int a , b, c¢;
a = 0x7A;
b = 0x16;
c = OxFD;

Find the result of
(1) a &= 0x3C;
(2) b |= 0x51;

(3) ¢ *= 0xDO;

MicroCamp : ATmega8 Activity Kit Manual ® 51

Solution:

(1) From a &= 0x3C;, itisequala = a & 0x3C;. It means get the value of a
(0x7A) AND with 0x3C and store the result back to a again.

It is equivalent to : a=(0000000001111010) & (0000000000111100)
0000000001111010
AND
0000000000111100

0000000000111000 -> 0x0038 or 0x38

(2) From b |= o0x51;,itisequalb = b |= 0x51; . It means get the value of b
(0x16) OR with 0x51 and store the result back to b again.

It is equivalent to : b =(0000000000010110) |= (0000000001010001)
0000000000010110
OR
0000000001010001

0000000001010111 -> 0x0057 or 0x57

A

(3) From ¢ “= o0xDO0;, itisequal c = ¢ “= 0xDO0;. It means get the valuse of ¢
(OxFD) XOR with 0xD0O and store the result back to ¢ again.

It is equivalent to : ¢ =(0000000011111101) ~=(0000000011010000)
0000000011111101
XOR
0000000011010000

0000000000101101 -> 0x002D or 0x2D

1
INNOVATIVE EXPERIMENT

52 ® MicroCamp : ATmega8 Activity Kit Manual

MicroCamp : ATmega8 Activity Kit Manual ® 53

Chapter 6

Library and Specific command
In MicroCamp kit

The MicroCamp Activity kit comes with a lot of libraries to support developers
and learners. It includes Input/Output port control library, Analog input reading library,
Delay time library, Sound library and Motor control library.

The summary of all libraries are as follows :

® in_out.h Library for Sending digital data to the output port and
Reading the Digital input port.

® sleep.h Delay function library

® analog.h Analog input reading library. Assist in reading of analog data
from PO to P4 port

® led.h LED control library

® motor.h DC motor control library
® sound.h Sound generator library
® timer.h Timer function library

All libraries must be stored in the same folder for proper linking of paths and to
avoid any errors. Learners can see details of all libraries from the MicroCamp_include
folder in CD-ROM which is bundled with the MicroCamp Activity kit.

54 ® MicroCamp : ATmega8 Activity Kit Manual

6.1 Command in in_out.h library

6.1.1 Digital input port reading function

in b : Port B input reading function
in ¢ : Port C input reading function

in_d : Port D input reading function

Function format :

char in a(x

char in b(x

(%)
(x)
char in c(x)
char in d(x)
Parameter :

x - determines the number of the input port that will be used. The value is0to 7.

Return value :

“0” or “1”
Example 6-1
char x=0; // Declare x to store the result.
x = in b(2); // Get PB2 value to store in x

Example 6-2

char x=0; // Declare x to store the result.

x = in d(4); // Get PD4 value to store in x

Example 6-3

#include <avr/io.hs> // Includes the Standard input/output port library
#include <in out.h> // Includes the Port control library

#include <sound.h> // Includes the Sound generator library

void main()

{

while (1)

{
if (in_d(2)==0) // Check SW1 pressed ?

{
sound (3000,100) ; // Generate sound if SW1 is pressed

}

MicroCamp : ATmega8 Activity Kit Manual ® 55

6.1.2 Sending data to output port function

This function determines the port pin, configures it to output and sends the value
to that port. These function does not return any values.

out b : Port B output sending function
out c : Port C output sending function

out_d : Port D output sending function

Function format :

out_b(char bit,char dat)
out_c(char bit,char dat)
out d(char bit,char dat)

Parameter :

_bit -select port’s pin. Range is 0 to 7.

_dat - determine the output value “0” or “1” to output pin

Example 6-4

out_c(5,0) ; // Send logic "0” to PC5 port.

out d(1,1); // Send logic "1” to PD1 port.

Example 6-5

#include <avr/io.hs // Includes the Standard input/output port library
#include <in out.h> // Includes the Port control library

#include <sound.h> // Includes the Sound generator library

void main()

{

while (1) // Looping.

{
out d(1,1); // Outs logic "1” via PD1. The LEDZ2 indicator on.
sleep(300) ; // Delays 0.3 second.
out _d(1,0); // Outs logic "0” via PD1. The LEDZ2 indicator off.
sleep(300) ; // Delays 0.3 second.

56 ® MicroCamp : ATmega8 Activity Kit Manual

6.1.4 Invert logic output port function

toggle b : Port B output invert logic function
toggle c : Port C output invert logic function

toggle d : Port D output invert logic function

Function format :

toggle b (x)
toggle c(x)
toggle d(x)

Parameter :

x - Determines the port number. The value is 0 to 7.

Example 6-6

toggle c(5); // Invert logic at PC5 port.
toggle d(1); // Invert logic at PD1 port.

6.2 Delay function in sleep.h library

This library only has one function. It is the sleep function. Developers can use this
function to pause or delay the operation in milisecond unit.

Function format :

void sleep (unsigned int ms)

Parameter :

ms - time value in millisecond unit. Range is 0 to 65,535.
Example 6-7

sleep (20) ; // Delays 20 millisecond approximation.

sleep(1000) ; // Delays 1 minute approximation.

MicroCamp : ATmega8 Activity Kit Manual ® 57

6.3 analog.h library : Analog input reading library

6.3.1 analog function

This is reading of an analog value. It reads from PCO to PC4 pins. Analog signals
will pass through the Analog to Digital Converter inside ATmega8 microcontroller. The
converter resolution is 10-bit. The digital output value in decimal number is 0 to 1,023
refer 0 to 5V DC voltage.

Function format :

unsigned int analog(unsigned char channel)

Parameter :
channel - select the analog input. Range is 0 to 4. It means PCO to PC4

Return value :

The digital data from the conversion, range is 0 to 1,023 in decimal number.

Example 6-8

int adc val=0; // Set the variable for storing the analog reading data

adc_val = analog(0); // Read from analog channel 0 (PCO) and sotre in adc_val.

6.4 LED blinking function in led.h library

The MicroCamp board provides 2 LEDs at PC5 (LED1) and PD1(LED2) pins. The LED
blink operation is a very simple method which sends logic “0” and “1” toggle always.
However developers can use a function to allow this operation to run concurrently
with other functions, with using the LED blinking function in led.h library.

ledl on() : enable LED1 (PC5) blinking
ledl off () : disable LED1 (PC5) blinking
led2 on() : enable LED2 (PD1) blinking

led2 off () : disable LED2 (PD1) blinking

Example 6-9

void main()
{
ledl on() ; // LED1 still blink although the Main program execute finished

58 ® MicroCamp : ATmega8 Activity Kit Manual

6.5 motor.h : Motor control library

6.5.1 motor function

This function is used for controlling the DC motor driver circuit on the MicroCamp
controller board.

Function format :

void motor (char _channel,int _power)

Parameter :
_channel - select motor output channel. On MicroCamp control board
has 2 channels; 1 and 2.
_power - determine the power apply for motor output.

Range is -100 to 100.

If value is positive (1 to 100), the motor will spin in a direction.
If value is negative (-1 to -100), the motor spin the other direction.
If the value is 0, motor will stop but this do not lock the motor’s

shaft.
Example 6-10
motor (1,60) ; // Drive motor channel 1 with 60% of power.
motor(l -60) B ./ / Drive motor channel 1 with 60% of power in the opposite direction.
Example 6-11
motor (2,100) ; // Drive motor channel 2 with full power (100%).

6.5.2 motor_stop function
It is the brake motor function. The motor’s shaft will lock after active this function.

Function format :

void motor stop(char channel)

Parameter :

_channel - select motor output channel. This parameter has 3 values.
1 for braking motor at OUT1 channel
2 for braking motor at OUT2 channel
ALL for braking all motor channel

Example 6-12

motor stop (1) ; // Brake motor channel 1.
motor_ stop (2) ; // Brake motor channel 2.
motor stop (ALL) ; // Brake motor both channel (1 and 2).

MicroCamp : ATmega8 Activity Kit Manual ® 59

6.5.3 motor_off function

This function is used for stopping the motor operation and to turn-off the voltage
of all motor outputs. This function is similar to the motor function which sets the power
value to 0.

Function format :

void motor off ()

6.5.4 forward function
This function is used for driving DC motor to move the robot in forward direction.

Function format :

void forward(int speed)

Parameter :

speed - determine the power applied to motor output. Range is 0 to 100.

6.5.5 backward function

This function is used for driving DC motor to move the robot in a backward direction.

Function format :

void backward(int speed)

Parameter :
speed - determine the power applied to motor output. Range is 0 to 100.

6.5.6 s_left function

This function is used for driving the DC motor to spin the robot in a left direction.

Function format :

void s_left(int speed)
Parameter :
speed - determine the power applied to motor output. Range is 0 to 100.
6.5.7 s_right function
This function is used for driving the DC motor to spin the robot in a right direction.

Function format :

void s _right (int speed)
Parameter :

speed - determine the power applied to motor output. Range is 0 to 100.

60 ® MicroCamp : ATmega8 Activity Kit Manual

6.6 sound.h : Sound generator library

This function is used for setting the sound frequency which drives the piezo speaker
on the MicroCamp controller board to produce sounds.

Function format :

void sound(int freq,int time)

Parameter :
freq - determine the frequency output in Hertz (Hz) unit.

time - determine the time value of sound output signal in millisecond unit.

Example 6-13

sound (2000, 500) ; // Generate 2kHz signal for 500 millisecond.
6.7 Counting time function in timer.h library

6.7.1 timer_start function

Determine the start point of the timer. After this function, the timer value will be
cleared.

Function format :

void timer start (void)

6.7.2 timer_stop function

This stops the timer and clears the counting value.

Function format :

void timer stop (void)

6.7.3 timer_pause function

Pause timer counting. The value still remains.

Function format :

void timer pause (void)

6.7.4 timer_resume function

Resume the counting after a pause from timer_pause function.

Function format :

void timer resume (void)

MicroCamp : ATmega8 Activity Kit Manual ® 61

6.7.5 msec function
Read the timer value in milliseconds.

Function format :

unsigned long msec /()
Return value :
Time value is in milisecond. The data type is a “long” variable.

6.7.6 sec function
Read the timer value in seconds.

Function format :

unsigned long sec()

Return value :

Time value is in second. The data type is a “long” variable.

Example 6-14

#include <in out.h>
#include <sleep.h>
#include <timer.h>

void main() // Main program
{
timer start(); // Set the startin point of timer
while (1) // Endless loop
{
if (msec () >500) // Check timer value. Is it more than 500 ?
{
timer stop(); // Stop and clear the timer value.
toggle c(5); // Toggle LED indicator every 0.5 second.

timer start(); // Start timer counting again.

INNOVATIVE EXPERIMENT

62 ® MicroCamp : ATmega8 Activity Kit Manual

MicroCamp : ATmega8 Activity Kit Manual ® 63

Chapter 7
Building robot with
MicroCamp Kkit

This chapter focus learning the applications of the MICROCAMP microcontroller.
The building of a robot integrates knowledge and technology which includes electronics,
programming, mechanical movements, and thinking process. The Microcamp Activity kit
supports this concept. This kit includes all parts for building a simple mobile robot. Users
can learn about programming and how to apply the microcontroller aspects via robotic

activities.

The Mobile robot in MICROCAMP has 2 DC Motor gearboxes for moving and 4
sensors for detecting external values. These are 2 touch sensors and 2 Infrared Reflector
Line tracking sensors for use in black and white line following.

Part list

'
&

Circle base plate

L
f JJJd
Jiy

Plastic spacer set x 1

Infrared reflector x 2

MicroCamp board

Box holder x 1

a@:o
=) =)

(olofe)

(ofefe)

Nut and Screw set x 1

S

Wheel and
Tire set x 2

48:1 DC motor
gearbox x 2

Ploastic joiners (Straight, Right angle

and Obtuse)

.' ¥ e

Swithc module

X2

2mm. Self-tapping
screw x2

#
[
#
i — e

25mm. metal
spacer x 2

64 ® MicroCamp : ATmega8 Activity Kit Manual

Construction

1. Fix on the 2 wheels with the rubber tires and attach them to the DC Gearbox with the 2

of the 2mm. self-tapping screws provided in the Kkit. H

2. Install both the DC Gearboxes on the circular base plate at the specific positions shown
in the picture with 4 of 3 x 6mm. machine screws.

Al B

motor attached position)

3. Insert the 3 x 10mm. machine screws through the hole at the corner of the Box holder
with 25mm. and 2 of 3 mm. spacers.

25mm. metal spacer

N

Hole position for
2 of 3mm. plastic spacer attached spacers

4. Place the Box holder from step 3 on the top of the Circle base plate and attach them
with 3 x 10mm. screws at the specific positions.

0000000000000
IOOOOOOOOOOOOO
0000000000000
0000000000000
0000000000000

Hole position for attached
Hole position for attached pox holder

box holder

MicroCamp : ATmega8 Activity Kit Manual ® 65

5. Insert a 3x15mm. machine screw through the Infrared Reflector sensor, followed by 2 of
the 3mm. spacer. Do on both sides for this.

3 x 15mm. machine screw 4%

3mm. spacer X 2 -

6. Attach both the Infrared Reflector structures from step 5 at the suitable holes at the
bottom and front of the robot base. Tighten with a 3mm. nut.

Hole position for attached Infrared Reflector sensor

Distance is 3 to 5 mm.

8. Place MicroCamp board on the box holder. Connect sensor cables and motor cables
following the diagrams shown. (PO for Right sensor and P1 for Left sensor).

A
Black 1 Red |

' N
sensor cable 2

v

e

Infrared Reflector sensor connection
[—— . R R NUEETTE

66 ® MicroCamp : ATmega8 Activity Kit Manual

9. Attach the Straight joiner with robot base at front-right side by 3 x 10mm. machine screw
and 3mm. nut. Attach 2 pieces.

10. Connect the Obtuse joiner at the end of Straight joiner. Attach the right angle joiner
with Switch module by 3 x 10mm. machine screw and 3mm. nut. Make 2 sets. Bring these
structures to connect at the end of the Obtuse joiner. Connect 2 sides.

11. Connect the Left Switch module cable to the P2 (PC2) connector and the Right Switch
module cable to the P3 (PC3) connector. Put 4 AA batteries into battery holder at the
back of MicroCamp board. The MicroCamp robot is ready for programming now.

MicroCamp : ATmega8 Activity Kit Manual ® 67

Learning about the Switch circuit :
Signal connector

The switch that is used with the MicroCamp has the following
schematic:

[0 |+V
LED1
Indicator
-O |DATA Switch
S1 i
iGND

Pressing the switch results in two occurrences.
When the switch is not pressed, let the results be logic "1”
When the switch is pressed, let the results be logic "0”, and LED1 light up.

Since the switch can give two results, it is considered to be a digital input component.

More information of Infrared Reflector

i G

ouT TCRT5000
>
> 510 Infrared Reflector sensor
GND O'—I 10k <

Signal connector

Q

AAAA

The heart of this sensor circuit is the sensor that detects reflections from infrared light. It
consists of the Infrared LED which emits infrared light to the surface. Photo-transistors will
then receive the reflected infrared lights. If no infrared light is received, the OUT terminal
will have low voltage when measured. In the case that it receives infrared light, whether low
or high current passes through the photo-transistor depends on the intensity of the light
received which in turn varies according to the distance of the reflection. (Sensor TCRT5000
can be used at a distance of 0.1 - 1.5 centimeters).

Therefore, 0.5 - 5V can be measured at the OUT terminal, and the MicroCamp will get a
value of 30 to 1023.

68 ® MicroCamp : ATmega8 Activity Kit Manual

Activity 1
Basic movement of MicroCamp robot

Activity 1-1 Forward and Backward movement

Al.1 Open the AVR Studio to create the new project and write the C program following
the Listing Al-1. Build this project.

Al.2 Connect the PX-400 programmer to the MicroCamp board on The MicroCamp robot
at the In-System Prog. connector. Turn-on the Robot. Downlaod the HEX code to the robot.

A1.3 Turn-off power and Remove the ISP cable.
Al.4 Make sure the robotis on a flat surface. Turn-on the power and observe the operation.

The MicroCamp robot moves forward. See both LED motor indicators light in green
color. After 1 second, both indicators change color to red and the robot moves backward.

If this is incorrect you will need to re-connect the motor cable to its opposite port /
polarity. Do this until your robot moves correctly. Once its done, Use this motor port
configuration for all your programming activities from now on. The robot will move forward
and backward continually until you turn off its power.

#include <in out.h>

#include <sleep.h>

#include <motor.h> // Motor driver library
void main ()

{

while (1) // Endless loop

{
forward (100); // Move the robot forward.
sleep (1000) ; // Delays 1 second.
backward (100); // Move the robot backward.
sleep (1000) ; // Delays 1 second.

}

) - J

Listing Al-1 The C Program that allows the Microcamp Robot to move in
circles.

MicroCamp : ATmega8 Activity Kit Manual ® 69

Activity 1-2 Circle-shape movement control

Al.5 Create a new project file and write the following C Codes shown in Al-2.

Al.6 Connect the PX-400 programmer to the MicroCamp board on The MicroCamp robot
at the In-System Prog. connector. Turn-on the Robot. Downlaod the HEX code to the robot.

Al.7 Turn-off power and Remove the ISP cable.

Al1.8 Make sure the robot is on a flat surface. Turn-on the power and observe the robot.

The robot will be activated when you press SW1 and move in circles continually

until you press the SW2 to stop the robot movement.

#include <in out.h>
#include <sleep.h>
#include <motor.h>
void main()

{

while (1)

{
while ((in d(2)==1)); // Loop for checking SW1l pressed
motor (1, 100) // Apply full power for Motor 1
motor (2,30) ; // RApply 30% power for Motor 2
while((ln d(3)==1)); // Loop for checking if SW2 pressed
motor off () ; // Stop all motors.

}
}

Program description

In Listing Al-2, the forward and backward com--
mands are not used for driving the robot. The MOTOR
function is used instead. This function can control both
motor outputs separately. This means that you can control
both the motor’s speed differently.

When both speeds are not equal, the robot will
move towards the direction where the motor is of a lower
speed. If the speed difference is great, the MicroCamp
robot will move in circles.

The While command is used in this program. If SW1
at PD2 port is being pressed, the LOGIC value of “O” is
returned. The first conditional loop is false. It then
continues with the second conditional loop. If SW2 at PD3
portis press, the Program will stop both motors. The Robot
will stop its movement.

;’%_‘

;\‘5

¥

Listing A1-2 The C program for MicroCamp robot move circle shape activity.

70 ® MicroCamp : ATmega8 Activity Kit Manual

Activity 1-3 Square-shape movement control

Al.9 Create a new project file and write the following C Codes shown in A1-3. Connect
the PX-400 programmer box to the MicroCamp board on The MicroCamp robot at the In-
System Prog. connector. Turn-on the Robot. Downlaod the HEX code to the robot.

A1.10 Turn-off power and Remove the ISP cable. Make sure the robot is on a flat surface.
Turn-on the power and observe the robot.

The robot will be activated if SW1 or SW2 is being pressed. If you Press SW1, the
robot will move forward and turn left continually, making a square. If you press SW2, the
operation is vice versa.

#include <in out.h>
#include <sleep.h>
#include <motor.h>
void main()

{

while (1) // Looping
{
if (in d(2)==0) // Check SW1l pressing
{
while (1)
{
forward (100) ; // Move forward with full speed 0.9 second
sleep(900) ;
s_right (50) ; // Turn right with 50% speed 0.3 second
sleep(300) ;
}
}
if (in d(3)==0) // Check SW2 pressing
{
while (1)
{
forward (100) ; // Move forward with full speed 0.9 second
sleep (900) ;
s left (50) ; // Turn left with 50% speed 0.3 second
sleep (300) ;
}
}
}
}
4 N\

Press SW2
(Move forward and
\Turn right)

.'\ﬁﬁ ‘:?%! éf%
(

\"i'} Press SW1
o Move forward and

Turn Ieft)/

Listing A1-3 The C Program for movement selection of the Microcamp Robot.

MicroCamp : ATmega8 Activity Kit Manual ® 71

Activity 2
Object detection with Collision

Activity 2-1 Simple collision detection

This activity is program the robot to detect the collision of both switches at the front
of the MicroCamp robot. After a collision is encountered, the robot will move backward
and change the its direction of movement.

A2.1 Create a new project file and write the following C Codes shown in Al-4. Build this
project.

A2.2 Connect the PX-400 programmer box to the MicroCamp board on The MicroCamp
robot at the In-System Prog. connector. Turn-on the Robot.

A2.3 Download the HEX code to the robot.

A2.4 Turn-off power and Remove the ISP cable.

A2.6 Prepare the demonstration area by placing and securing boxes or objects on the
surface.

A2.7 Bring the robot into the demonstration area .Turn-on the power and observe the
robot. The MicroCamp robot will read both switch status from PD2 and PC3 port. If any
switch is pressed or touches some object, the result is logic “0”.

In a normal operation, the robot will move forward continually.

If the Left Switch module touches any object, the robot will move backward and
change its moving direction to its right to avoid the object.

If the Right Switch module touches any object, the robot wil move backward and
change its moving direction to its left to avoid the object.

72 ® MicroCamp : ATmega8 Activity Kit Manual

#include <in out.h>
#include <sleep.h>
#include <motor.h>
void main ()

{

while((in d(2)==1)) ; // Loop until SW1 is pressed to start the program.
while (1) // Repeat loop
{
if (in c(2)==0) // Check status of the right switch.
{
backward (100) ; // If ther is a collision, the robot moves backward
// for 0.4 second
sleep (400) ;
s _left (50) ; // and turns left for 0.3 second.
sleep (300) ;
}
else if (in c(3)==0) // Check status of the left switch.
{
backward (100) ; // If ther is a collision, the robot moves backward
// for 0.4 second
sleep (400) ;
s_right (50) ; // and turns right 0.3 second.
sleep (300) ;
}
else
{
forward (100) ; // No collision is deteced,
// the robot moves forward continually.
}
}
}
4 I
'd
““ﬁg .
.qa. .
Robot attacks the object in the left. Robot attacks the object in the right.
\ J

Listing A2-1 The C Program for Object Collision detection

MicroCamp : ATmega8 Activity Kit Manual ® 73

Activity 2-2 Trapped in a corner situation

When the Robot is in a corner, it is caught in between whereby to the left or right is
a wall. This causes continous hitting of the walls and thus trapping the robot in this corner.
The solution is to modify your exiting C Code from A2-1 to that which is shown in A2-2.

A2.8 Create a new project file for making the C program according to Listing A2-2.
A2.9 Connect the PX-400 programmer box to the MicroCamp board on The MicroCamp
robot at the In-System Prog. connector. Turn-on the Robot.

A2.10 Prepare the demonstration area by placing and securing boxes or objects on the
surface.

A2.11 Bring the robot into the demonstration area .Turn-on the power and observe the
robot.

The robot will move forward and check for collision. If this happens over 5 times
consecutively, the robot will spin 180 degrees to change its direction.

#include <in out.h>

#include <sleep.h>

#include <motor.h>

#include <sound.h> // Sound library
void main ()

{

unsigned char cnt =0; // Declare variable for counting the number of
// collision both left and right.
while ((in d(2)==1)); // Wait for SW1l is pressed to start operation
sound (3000, 100) ; // Beep at once
while (1) // Looping
{
if (in_c(2)==0) // Check the right-side collision
{
if ((cnt_%2)==0) // Check the counter as even number or not.

// If yes, means the previous collision is left-
// side collision.

{ent_++;} // Increment the counter
else // If not left-side collision,
{ent =0;} // clear the counter
backward (100) ; // Move backward 0.4 second
sleep (400) ; //
s _left (50) ; // Turn left
if (cnt_>5) // Check the counter over 5 or not.
{
sleep(700) ; // If over, turn left more 0.7 second.
sound (3000,100) ; // Drive sound to piezo speaker
cnt =0; // Clear counter

}

Listing A2-2 The C program for MicroCamp robot in Trapping wall solution
activity (continue..)

74 ® MicroCamp : ATmega8 Activity Kit Manual

else // I1If counter is less than 5,
} { sleep(300);} // Set time value for turning to 0.3 second.
else if (in c(3)==0) // Check the leftt-side collision
{
if ((cnt_%2)==1) // Counter is odd number or not.
// If yes, the previous collision is right-side.
{ent _++;} // Increment counter
else
{ent =0;} // If not, clear counter
backward (100) ; // Robot move backward for 0.4 second
sleep(400) ; //
s_right (50) ; // Turn right for 0.3 second
sleep(300) ; //
!
else // If not collision, move forward.
{forward (100) ;}

Listing A2-2 The C program for MicroCamp robot in Trapping wall solution
activity (final)

MicroCamp : ATmega8 Activity Kit Manual ® 75

Activity 3
Line tracking robot

From the 2 first activities, these show how to read the digtal input signal and to get
the data to control robot movement. In this activity, there will be many activities about
reading analog inputs and processing the data to detect black and white areas. It also
detects Black and white line to control the robot to move along the line with conditions.

The MicroCamp robot has 5 analog inputs that directly connects to the PCO to
PC4 of ATmega8 microcontroller. This microcontroller contains the 10-bit analog to digital
converter (ADC) module. The digital conversion datais 0 to 1023 in decimal number format.

C programming for this activity require a library file. It is the analog.h file. Functions
in this library will define relate the input port to the analog input and reads data from ADC
module to store in its memory. The resulting data range is 0 to 1023 in decimals or 0000H to
03FFH in hexadecimals.

The important devices in this activity is the 2 Infrared Reflector modules. They are
installed at the bottom of the robot base. They are used to detect the surface’s color
(black and white) including the white and black line. The Line tracking robot activity is the
classic activity. It shows the basic robot’s programming performance.

Activity 3-1 Testing black and white area

The MicroCamp robot is attached with 2 of Infrared Reflector module at bottom of
the robot base ready. Thus, this activity will only dwell on programming.

Before develop the robot to track the line, developers must program the robot to
detect the difference between black and white color surface.

(A) White surface testing

This sub-activity presents how to detect the white surface. The Listing A3-1is C program
for testing Infrared Reflector operation. After execution, the program will wait for SW1 or
SW2 pressing.

If press SW1 : select to read data from PO or PCO analog port
If press SW2 : select to read data from P1 or PC1 analog port

After pressing the switch, the program will read data at the port pin continuously
and will not switch to read another sensor unless the RESET button is pressed. Developers
must press both switches to get the sensor’s data.

76 ® MicroCamp : ATmega8 Activity Kit Manual

#include <in out.h>

#include <sound.h>

#include <analog.h> // BAnalog reading library
void main ()

while (1) // Loop for waiting the key selection to
// read PO or P1
{ if ((in_d(2)==0)) // Check SW1 pressing
while (1) // Repeat this loop
if (analog(0)>350) // Read the value from PO and check the

// white surface.

{

sound (3000, 100) ; // If the white surface is deteced,
// drive the sound to speaker.
}

}
}

if ((in_d(3)==0)) // Check SW2 pressing
while (1) // Repeat this loop
{
if (analog(1l)>350) // Read the value from P1 and check the

// white surface.

{

sound (3000,100) ; // If the white surface is deteced,
// drive the sound to speaker.

Listing A3-1 The C program for MicroCamp robot in White surface testing activity

Compare the sensor’s data with the reference data; 350.
If data values are more than 350, the color that is detected is white color.
If data values are less than 350, the color that is detected is black color.

After detect the white surface ready, program will send the sound sighal to piezo
speaker.

A3.1 Make the black & white testing sheet. The white surface area is 30 x 30 cm. and
black surface is 30 x 30cm.

A3.2 Create the new project file and make the C program following the Listing A3-1. Build
this project file.

A3.3 Connect the PX-400 programmer box with MicroCamp robot and download the HEX
code to the robot.

MicroCamp : ATmega8 Activity Kit Manual ® 77

A3.4 Place the robot on the black surface first. Turn on the power and press SW1 switch.

The Robot does not move.

A3.5 Place the robot on the white surface and try to roll the robot.

The robot produces sounds when its on a white surface.

0 00c——>0c—500©
000~ %o

BO‘E

A3.6 Press the RESET switch. Place the robot on the black surface again. Press switch SW2
to test the operation of the Infrared Reflector at P1 port. Observe the robot’s operation.

After press SW2, robot will get data from sensors at P1 port and compare the
reference value ; 350. If the reading value more than 350, means the robot detects the
white area. It send sound signal to drive a piezo speaker. From step A3.6, robot detects
the black surface then do not work anything.

A3.7 Place the robot on the white surface and try to roll the robot.
Robot drives sound always above the white surface.

A3.8 If the robot cannot drive the signal when placed on the white surface in testing. The
solution is

(1) Decrease the reference value from 350 but not lower 100
(2) Adjust the sensor position to decrease the distance from the floor.

A3.9 The Listing A3-2 is C program for testing the black surface. Developers can test with
this program to check the black surface detection of robot to make sure the robot can
detect white and black surface well. The procedure is same in step A3.4 to A3.8. But the
decision criteria will change from higher 350 to lower 350 instead.

78 ® MicroCamp : ATmega8 Activity Kit Manual

#include <in out.h>

#include <sound.h>

#include <analog.h> // BAnalog reading library
void main ()

while (1) // Loop for waiting key selection to read
PO or P1
if ((in_d(2)==0)) // Check SW1 pressing
while (1) // Repeat this loop
if (analog(0)<350) // Read the value from PO and check the

// black surface.

{

sound (3000, 100) ; // I1If the black surface is detected,
// drive the sound to speaker.

if ((in_d(3)==0)) // Check SW2 pressing
while (1) // Repeat the loop
{
if (analog(1l)<350) // Read the value from P1 and check the

// black surface.

sound (3000,100) ; // If the black surface is deteced,
// drive the sound to speaker.

Listing A3-2 The C program for MicroCamp robot check the Black surface activity

MicroCamp : ATmega8 Activity Kit Manual ® 79

Activity 3-2 Robot moves along the black line

The robot moving along the line has 3 scenarioes.

(1) Both sensors read values that are white : The robot will move forward.
Thus, this program is written so that the robot moves forward normally.

(2) The left sensor reads black while the right sensor reads white : This occurs
when the robot is slightly turned to the right. Thus, the program is written for the robot to
move back left to resume its normal path.

(3) The left sensor read white while the right sensor reads black : This occurs
when the robot is slightly turned to the left. Thus, the program is written for the robot to
move back to the right to resume its normal path.

From all scenarioes, can make the C program in the Listing A3-3.

S a— o

.CED-: 3
Scenario-1 Scenario-2 Scenario-3
Both sensors put across Left sensor detects the line Right sensor detects the line

A3.10 Make the simple black line sheet. It has not the cross line. Most area is white color.
Size of sheet can determine suitable for your robot.

A3.11 Create the new project file and make the C program following the Listing A3-3. Build
this project file.

A3.12 Connect the PX-400 programmer box with MicroCamp robot and download the
HEX code to the robot. Turn off power and unplug ISP cable from the robot.

80 ® MicroCamp : ATmega8 Activity Kit Manual

#include <in out.h>
#include <sound.h>
#include <analog.h>
#include <motor.h>
unsigned int AD0=350,AD1=350;

void main ()

{

while ((in_d(2)==1));

while (1)

{

if ((analog (0) >ADO0) && (analog(l) >AD1))

forward (100) ;
if (analog(0)<ADO)
s_left (100);
if (analog(l)<AD1)
s_right (100) ;

//
//
/7

//
//

//
//
//
//
//

Motor diver library
Determine the sensor reference
value.

Wait pressing SW1l to start the
program

Both sensor detect the white
surface.

Move forward

Left sensor detects black line.
Turn left

// Right sensor detects black line.

//

Turn right

.

/

Listing A3-3 The C program for controlling the MicroCamp robot to moves

along the black line

A3.13 Place the robot across the black line on the sheet. Turn on power and press SW1

switch.

Robot will move along the black line. It is possible that the robot moves out of the
line. You can improve the precision by editing the program with adjusting the sensor
reference value and adjust to the position of both the Infrared Reflector sensors.

MicroCamp : ATmega8 Activity Kit Manual ® 81

Activity 3-3 Line crossing detection

From the activity 3-2, you can improve the MicroCamp robot so that it moves along
the black line and detect the junction or line with same 2 sensors. One thing to do is edit
the program.

When the robot moves to line crossing, both sensors will detect black line. You must
add the program for support this scenario. The improved C program is shown in the Listing
A34

A3.14 Improve the simple black line sheet from Activity 3-2. Add some cross lines. The number
will depend on your inquiry.

A3.15 Create the new project file and make the C program following the Listing A3-4. Build
this project file.

A3.16 Connect the PX-400 programmer box with MicroCamp robot and download the
HEX code to the robot. Turn off power and unplug ISP cable from the robot.

A3.17 Place the robot across the black line on the sheet. Turn on power and press SW1
switch.

Robot will move along the black line. When the robot detects the crossing, it will
brake and drive sound once. When it finds the second crossing, the robot will drive sound
twice and this will increase for the subsequent crossings.

Note : In the motor brake operation, robot will stop and lock the motor’s shaftimmediately.
But sometimes, this is not enough. You must program the robot to move backwards for a
short time. This will cause the robot to stop at its position.

82 ® MicroCamp : ATmega8 Activity Kit Manual

#include
#include
#include
#include
unsigned
unsigned
void mai

{

while

whi

{
if (

{

<in out.h>
<sound.h>
<analog.h>
<motor.h>

int AD0=350,AD1=350;
char 1=0,3=0;
n ()
((in_d(2)==1));
le(1)
(analog (0) <ADO) && (analog (1) <AD1))
J++;

backward (30) ;

// Motor control library
// Sensor reference value
// Crossing counter variable

// Wait for SW1l to be pressed to
// start

// Detect line-crossing.

// Move backward for a short time

to // to brake.
sleep(10) ;
motor stop (ALL) ; // Motor brake function
for (i=0;i<j;i++) // Repeat the loop
// line-crossing detection
{
sound (2500,100) ;
sleep(50) ;
} // Drive sound
forward (100) ; // Move forward to closs over
sleep(300) ; // the line.
}
if ((analog (0) >AD0) && (analog (1) >AD1)) // Both sensor detect white surface.
forward (100) ; // Move forward
if (analog(0)<ADO) // Left sensor detects black line.
s _left (100) ; // Turn left
if (analog(l)<AD1) // Right sensor detects black line.
s_right (100) ; // Turn right
}
}
4 N
_ /

Listing A3-4 The C program for controlling the MicroCamp robot to moves
along the black line and detect the line-crossing.

MicroCamp : ATmega8 Activity Kit Manual ® 83

MicroCamp libraries
source program

In_out.h

Read and Write the digital data with any port

#ifndef IN OUT_
#define IN OUT

#define toggle b (x) DDRB |= BV
#define toggle c(x) DDRC |= BV
#define toggle d(x) DDRD |= BV

char in b(char bit)

{

DDRB &= ~(l<<_bit);

return((PINB & BV (bit))>> bit);

}

char in c(char bit)

{

DDRC &= ~(1l<<_bit);

return((PINC & BV(bit))s>> bit);

}

char in d(char _bit)

{

DDRD &= ~(l<<_bit);

return((PIND & BV(bit))s>> bit);

}

void out b(char bit,char dat)

DDRB |= BV(bit);
if (_dat)

PORTB |= BV(bit);
else

PORTB &= ~ BV(bit);

}

void out c(char bit,char dat)

{

DDRC |= BV(bit);
if (_dat)

PORTC |= _BV(_bit);
else

PORTC &= ~ BV(bit);

}

void out d(char bit,char _dat)

{

DDRD |= _BV(_bit);
if (_dat)

PORTD |= _BV(_bit);
else

PORTD &= ~_ BV(_bit);

}

#endif

A

PORTB “= BV(X);
PORTC “= BV(x);
PORTD “= BV(x);

84 ® MicroCamp : ATmega8 Activity Kit Manual

sleep.h
Delay function library

#ifndef sleep
#define sleep
void sleep (unsigned int ms)
{
unsigned int 1i,7J;
for(i=0;i<ms;i++)
for(j=0;3<795;j++) ;
}

#endif

analog.h
Analog reading input library

unsigned int analog(unsigned char channel)
{

unsigned int adc val;

ADMUX = 0x40;

ADMUX |= channel; // Sigle end mode

ADCSRA = 0xCé6;

while ((ADCSRA & (1<<ADSC)));

adc_val = ADCL;

adc_val += (ADCH*256) ;

return (adc_val) ;

}

sound.h
Sound generator library

#include <in out.hs>
#include <sleep.h>
void delay sound(unsigned int ms)
{
unsigned int i, 3j;
for(i=0;i<ms;i++)
for(j=0;3<200;j++) ;
}

void sound(int freq,int time)

{

int dt=0,m=0; // Keep value and
dt = 5000/freq; // Keep active logic delay
time = (5*time) /dt; // Keep counter for generate sound

for (m=0;m<time;m++) // Loop for generate sound(Toggle logic P0.12)

{

out _d(4,1);

delay sound(dt) ; // Delay for sound
out_d(4,0);

delay sound(dt) ; // Delay for sound

void sound cnt (unsigned char cnt,int freq,int time)

{
unsigned char i;
for (i=0;i<cnt;i++)
{
sound (freq, time) ;
sleep (300) ;

}

MicroCamp : ATmega8 Activity Kit Manual ® 85

led.h
LED control library

// Library for LED indicator by Timer 2 interrupt every 5 ms
#include <avr/interrupt.h>

#include <avr/signal.h>

#include <in out.h>

unsigned char LED=0;

unsigned char LED_cnt;

SIGNAL (SIG_OVERFLOWZ) // Interval 10 ms
{
TCNT2 = 178; // Reload interval 10 ms (TCNT2 = 178)
LED cnt++; // Increment Counter
if (LED _cnt>30) // Check Counter 10 ms X 30
{
LED cnt=0; // Clear Counter
if (LED==1) // Check LED1 Enable
{
toggle c(5);
else if (LED==2) // Check LED2 Enable
{
toggle d(1);
else if (LED==3) // Check LED1 and LED2 Enable
{
toggle c(5);
toggle d(1);
}
}
void interval init () // Config. and Start up timer O
TCCR2 |= (1<<(CS22) | (1<<CS21) | (1<<CS20) ;

// Prescaler 1024,16 MHz,
// 1 MC = 1024/16M = 64us/count

TIFR |= 1<<TOV2; // Clear TOV2 / clear
TIMSK |= 1<<TOIE2; // Enable Timer2 Overflow Interrupt
TCNT2 = 178; // Interval 10 ms
sei(); // Enable all interrupt
}
void ledl on() // Start Blinking LED1

{

interval init();

LED |= (1<<0) ;
void ledl off () // Stop Blinking LED1
LED &= ~ BV(0);

void led2 on()

{

interval init(); // Start Blinking LED2
LED |= (1<<1) ;

void led2 off()

{
}

LED &= ~ BV(1); // Stop Blinking LED2

86 ® MicroCamp : ATmega8 Activity Kit Manual

motor.h
Dc motor control library

/* Hardware Configuration
MOTOR1
- PD7 Connect to 1B port
- PD6 Connect to 1A port
- PB1 Connect to 1E port

MOTOR2

- PBO Connect to 2A port
- PD5 Connect to 2B port
- PB2 Connect to 2E port

#include <avr/io.h>

#include <avr/signal.h>

#include <avr/interrupt.hs>
#define ALL 3

#define all 3

unsigned char dutyl=0, duty2=0;
char pwm ini =0;

SIGNAL (SIG _OVERFLOW1)

OCR1AL _dutyl;
OCR1BL = _duty2;

}

void pwm_init ()

{

TCCR1A |= (1<<WGM10) ;

TCCR1B = (1<<CS12) | (1<<CS10) | (L<<WGM12) ;
// TCCR1B = (1<<CS12) | (1<<WGM12) ;

TIFR |= 1<<TOV1;

TIMSK |= 1<<TOIE1;

sei();

}

void pwm(char channel,unsigned int duty)

{
duty = (duty*255)/100;
if (pwm_ini==0)

pwm_init () ;
pwm_ini=1;

if (channel==2)

{
TCCR1A |= BV(COM1Al) ;
DDRB |= BV (PB1);
OCR1AL = duty;
_dutyl = duty;

else if (channel==1)

{
TCCR1A |= BV(COM1B1);
DDRB |= BV (PB2);
OCR1BL = duty;
_duty2 = duty;

else if (channel==3)

//
//

Clear all motor

Clear all motor

duty cycle variable

Flag for check initial ?

Interval 1 ms

Duty Cycle 1 Read
Duty Cycle 2 Read

Set Prescaler
Set Prescaler

//Clear TOVO / clear

//Enable Timer0 Overflow Interrupt
//timer enable int(BV (TOIE1l)) ;

// Convert 0-100 to 0-255

//

//
//

PWM Initial ?

If no Intitial it
show now initial

}

}

TCCR1A |= _BV(COM1Al);
DDRB |= BV (PB1);
OCR1AL = duty;

_dutyl = duty;

TCCR1A |= BV(COM1B1);
DDRB |= BV (PB2);
OCR1BL = duty;

_duty2 = duty;

void motor (char channel,int

{

}

if (_powers0)

{

pwm(_channel, power) ;
if (_channel==2)

{

out_d(7,1);
out_d(6,0);
}
else if(channel==1)
{
out_d(5,0);
out b(0,1);
}
}
else

{

__power)

pwm(_channel, abs (_power)) ;

if (_channel==2)
{
out _d(7,0);
out _d(6,1);
}
else if(_channel==1)
{
out_d(5,1);
out_b(0,0);

}

void motor stop(char _channel)

{

pwm(_ channel,100) ;
if (_channel==2

| | channel==3)

{
out _d(7,0);
out _d(6,0) ;
}
if (_channel==1|| channel==3)
{
out _d(5,0) ;
out b (0,0);

MicroCamp : ATmega8 Activity Kit Manual ® 87

88 ® MicroCamp : ATmega8 Activity Kit Manual

void motor off ()
{
pwm(3,0) ;
out _d(7,0
out _d(6,0
out _d(5,0
out b(0,0

)i
) i
).
)

!

1 !

}

void forward(int speed)

{
motor (1, speed) ;
motor (2, speed) ;

}

void backward (int speed)

{

motor (1, speed*-1) ;
motor (2, speed*-1) ;

}

void s_left (int speed)

{

motor (1, speed) ;
motor (2, speed*-1) ;

}

void s_right (int speed)
{
motor (1, speed*-1) ;
motor (2, speed) ;

timer.h

Timer library

#include
#include

/********************** Timer O

/*********************

unsigned long ms=0;

SIGNAL (SIG_OVERFLOWO)
{

TCNTO = 6;

_mS++;

}

void timer start (void)

{

TCCRO = (1<<CS01) | (1<<CS00) ;
TIFR |= 1<<TOVO;

TIMSK |= 1<<TOIEO;

TCNTO = 6;

sei();

ms = 0;

}

void timer stop()

{

TCCRO = 0;

TCNTO = 0;

TIMSK &= ~ BV (TOIEO) ;
ms = 0;

}

void timer pause()

TCCRO = 0;

}

void timer resume()

TCCRO = (1<<CS01) | (1<<CS00) ;

}

unsigned long msec ()

{
}

unsigned long sec()

{
}

return(_ms) ;

return(ms/1000) ;

Interval 1 ms

MicroCamp : ATmega8 Activity Kit Manual ® 89

<C:/WinAVR/avr/include/avr/interrupt.h>
<C:/WinAVR/avr/include/avr/signal.h>

Interrupt
***************************************/

*********************************/

// Interval 1 ms

// Interval 1 ms

// Config. and Start up timer 0

// Prescaler 64,16MHz,1MC=64/16M=4us/count
//Clear TOVO / clear

//Enable Timer0 Overflow Interrupt

// Interval 1 ms

// Enable all interrupt

// Stop timer and

// Clear bit TOIEO
// Clear time

// Stop timer and not clear time

// Prescaler64,16MHz,1MC=64/16M=4us/count

INNOVATIVE EXPERIMENT

90 ® MicroCamp : ATmega8 Activity Kit Manual

COPYRIGHTS

This documentation is copyright 2006-2007 by Innovative Experiment Co., Ltd. (INEX)
By downloading or obtaining a printed copy of this documentation or software you
agree that it is to be used exclusively with INEX products. Any other uses are not
permitted and may represent a violation of INEX copyrights, legally punishable according
to Federal copyright or intellectual property laws. Any duplication of this documentation
for commercial uses is expressly prohibited by INEX. Duplication for educational use is
permitted, subject to the following Conditions of Duplication:

INEX grants the user a conditional right to download, duplicate, and distribute this
text without INEX’s permission. This right is based on the following conditions: the
text, or any portion thereof, may not be duplicated for commercial use; it may be
duplicated only for educational purposes when used solely in conjunction with INEX
products, and the user may recover from the student only the cost of duplication.

All text and figure is subject to publisher’s approval. We are not responsible for mistakes,
misprints, or typographical errors. Innovative Experiment Co., Ltd. (INEX) assumes
no responsibility for the availability.

